

Department of Commerce
Intranet Architecture

Prepared for:

Dale Lanser, COR

U.S. Department of Commerce

OCIO, Office of Information Systems

Prepared by:

INDUS Corporation

1953 Gallows Road

Vienna, Virginia 22182

DOC Contract Number: 50CMAA900048

Task Order Number: ISE00032

Task 2: Standards and Protocols Research

November 13, 2000

DOC Intranet Architecture i

Table of Contents

United States Department of Commerce Intranet Architecture Overview 1

1 Introduction.. 1

2 Overview of the Architecture... 1

2.1 Communication Channels ... 1

3 The WAP Server .. 2

3.1 Overview... 2

3.2 The WAP Password File ... 2

3.3 Security.. 3

3.4 Support Software... 3

3.5 The Hardware.. 3

4 The Directory Server.. 3

4.1 The Directory Management Application... 4

4.2 The Group Services Application... 4

4.3 Support Software... 4

4.4 Hardware ... 4

4.5 Summary... 4

5 The Portal Application... 5

6 Other Applications ... 5

7 Architecture Features ... 5

7.1 Single Sign-On.. 5

7.2 Inter Application Communication... 5

8 Other Issues.. 6

Appendix A: Web-user Authentication Protocol.. 8

DOC Intranet Architecture ii

1 Introduction.. 8

2 Requirements.. 8

2.1 Protocol Requirements .. 8

2.2 Web Browser Requirements.. 8

2.3 Application Requirements... 9

2.4 Authenticator Requirements.. 9

3 Terminology... 9

4 Protocol Overview.. 11

5 Authenticator.. 12

5.1 Ticket Service.. 12

5.2 Password Service... 24

6 WAP-enabled Applications (WAP Client Interface)... 27

6.1 Overview... 27

6.2 Request Input Parameters.. 27

6.3 Execution... 28

6.4 Outputs.. 31

7 Scenarios .. 32

8 Encryption and Digital Signatures ... 34

8.1 Digital Signatures.. 34

9 Unresolved Issues... 34

10 References .. 34

Appendix B: WAP Client API for the DOC Intranet... 35

1 Introduction.. 35

2 Terminology... 35

3 Overview.. 35

DOC Intranet Architecture iii

4 The Directory API for Java .. 36

4.1 The AuthenticationManager Class.. 37

4.2 The BadAppIIDException Class... 42

4.3 The BadClientIPAddressException Class... 42

4.4 The BadSignatureException Class.. 43

4.5 The ProtocolViolationException Class ... 43

4.6 The RedirectNoTicketException Class ... 44

4.7 The RedirectRenewalException Class.. 45

4.8 The RedirectRequiredException Class.. 45

4.9 The RedirectToSelfException Class ... 46

4.10 The TicketService Class.. 46

5 The WAP Client API for Perl... 48

5.1 The AuthenticationManager Class.. 49

5.2 The BadAppIIDException Class... 54

5.3 The BadClientIPAddressException Class... 55

5.4 The BadSignatureException Class.. 55

5.5 The ProtocolViolationException Class ... 55

5.6 The RedirectNoTicketException Class ... 56

5.7 The RedirectRenewalException Class.. 56

5.8 The RedirectRequiredException Class.. 57

5.9 The RedirectToSelfException Class ... 57

5.10 The TicketService Class.. 57

6 The WAP Client API for PHP ... 60

6.1 The AuthenticationManager Class.. 61

6.2 The TicketService Class.. 67

DOC Intranet Architecture iv

Appendix C: DOC Intranet Cryptography Overview .. 69

1 Introduction.. 69

2 Digital Signatures... 69

3 Encoding for HTTP Transmission... 69

4 References .. 70

Appendix D: Directory Schema for the DOC Intranet Directory Service 71

1 Introduction.. 71

2 Terminology... 71

3 Overview.. 73

3.1 Directory Service Access.. 73

3.2 Directory Service Organization... 73

3.3 Common Attributes... 74

4 Application Entries... 74

4.1 docApp Entries.. 74

5 People Entries... 77

5.1 docPerson Entries.. 77

5.2 docAppUser Entries .. 82

6 Groups Entries.. 83

6.1 Types of Groups.. 83

6.2 Organizational Groups .. 83

6.3 docGroup Entries... 84

7 References .. 86

Appendix E: Directory API for the DOC Intranet Directory Service.. 89

1 Introduction.. 89

2 Terminology... 89

DOC Intranet Architecture v

3 Overview.. 90

3.1 Using the Directory API.. 90

3.2 The docDirectory.conf File ... 90

4 The Directory API for Java .. 91

4.1 The DocDirectory Class.. 91

4.2 Obtaining the DocDirectory Class .. 91

4.3 Retrieving App Information in Java.. 92

4.4 Retrieving Person Information in Java.. 92

4.5 AppUser Information.. 96

4.6 Retrieving Group Information in Java .. 97

5 The Directory API for Perl... 101

5.1 The DocDirectory Object.. 101

5.2 Obtaining a DocDirectory Handle... 101

5.3 Retrieving App Information in Perl... 101

5.4 Retrieving Person Information inPerl.. 101

5.5 AppUser Information.. 103

5.6 Retrieving Group Information in Perl... 103

6 The Directory API for PHP.. 105

6.1 The docdirectory Object.. 105

6.2 Obtaining a docdirectory Handle .. 105

6.3 Retrieving App Information in PHP ... 105

6.4 Retrieving Person Information inPHP .. 105

6.5 AppUser Information.. 107

6.6 Retrieving Group Information in PHP .. 107

Appendix F: DOC Intranet Inter-Application Communication Protocol................................... 111

DOC Intranet Architecture vi

1 Introduction.. 111

2 Requirements.. 111

2.1 DOCIACP Client Application Requirements ... 112

2.2 DOCIACP Server Application Requirements... 112

3 Terminology... 112

4 Overview.. 113

5 Protocol Definition... 114

5.1 The DOCIACP Request.. 114

5.2 The DOCIACP Authentication Scheme... 115

5.3 The DOCIACP Response... 117

6 Selection of Nonce values.. 117

7 Catalog Service Definition... 118

8 Issues .. 121

9 References .. 121

Apendix G: DOC Inter-Application Communication Protocol API .. 122

1 Introduction.. 122

2 Terminology... 122

3 Overview.. 122

3.1 Using the IACP APIs .. 122

4 The IACP Client API for Java.. 123

4.1 The IacpClient Class ... 123

4.2 The IacpResponse Class.. 128

4.4 The XmlIacpResponse Class... 131

4.5 The StringIacpResponse Class.. 132

4.6 The IacpService Class ... 133

DOC Intranet Architecture vii

4.7 The BadContentTypeException Class .. 136

5 The IACP Server API for Java ... 137

5.1 The IacpHandler Class.. 137

5.2 The NotInitializedException Class.. 144

6 The IACP Client API for Perl.. 145

6.1 The IacpClient Class ... 145

6.2 The IacpResponse Class.. 149

6.3 The XmlIacpResponse Class... 152

6.4 The IacpService Class ... 153

6.5 The BadContentTypeException Class .. 154

6.6 The XmlParseException Class.. 155

6.7 The IacpConnectionException Class .. 155

6.8 The IacpAuthenticationException Class ... 155

7 The IACP Server API for Perl.. 156

7.1 The IacpHandler Class.. 156

7.2 The IllegalArgumentException Class ... 163

7.3 The NotInitializedException Class.. 163

8 The IACP Client API for PHP ... 164

8.1 The IacpClient Class ... 164

8.2 The IacpResponse Class.. 168

8.3 The XmlIacpResponse Class... 171

8.4 The IacpService Class ... 171

9 The IACP Server API for PHP... 174

9.1 The IacpHandler Class.. 174

10 References .. 181

DOC Intranet Architecture 1

United States Department of Commerce Intranet
Architecture Overview

1 Introduction
This document explains the high level architecture for the Department of Commerce intranet.
It explains the primary components of the system, how they are organized onto physical
machines, and how they communicate with each other. It details what support software each
component needs in order to operate correctly.

This document does not provide hardware specifications for the various server machines
mentioned. It does not attempt to specify the design details of the various sub-components of
each system component. Internal design issues are occasionally mentioned to aid in the
understanding of the overlying architecture.

2 Overview of the Architecture

The DOC Intranet can be divided into large architectural components and the communication
channels among them. Figure 1 depicts the main components of the intranet:

1) WAP server for authentication,

2) Directory server to store user and application information, and

3) One or more application servers.

A primary application on the intranet is the intranet portal. It was chosen to represent a
typical application in this diagram. Figure 1 shows the three components arranged on top of
three server class machines. Within each machine are the various software sub-systems that
are required for the component to function correctly within the intranet. Each larger
component could be one or more machines working together to provide the given
functionality. The dotted lines in Figure 1 show possible machine divisions.

Not depicted in Figure 1 is the user who accesses the intranet via a web browser. The
browser must supports cookies.

2.1 Communication Channels

The solid arrow-tipped lines indicate communication pathways and protocols among the
various pieces of the system. Both intra-machine and inter-machine channels are depicted.

There are three primary communication protocols used within the intranet:

1) WAP – Web user Authentication Protocol

2) IACP – Inter Application Communication Protocol

DOC Intranet Architecture 2

3) LDAP – Lightweight Directory Access Protocol

4) AJP – Advanced Jserv Protocol

WAP and IACP are proprietary and are discussed in detail in Appendix A: Web-user
Authentication Protocol and Appendix F: DOC Intranet Inter-Application Communication
Protocol respectively. Both sit on top of the HTTP protocol. LDAP is an industry standard
for communicating with a hierarchical text-based database. AJP is a protocol developed to
facilitate communication between a web server adapter (in this case mod_jserv) and a servlet
container (in this case Tomcat).

In the sections below, each component is addressed in more detail including what support
software is required and how the component might be laid out across several different
physical computers.

3 The WAP Server

3.1 Overview

The WAP server is labeled on Figure 1 as login.doc.gov. The WAP server works in
conjunction with the Directory Service to provide the authentication mechanism for the
intranet. It provides for the single sign-on capability for the intranet.

Typically, users do not contact the WAP server directly; rather, they access a departmental
application. If the user has not been authenticated, the application sends a redirect to the
user’s browser pointing it to the WAP server. The WAP server then provides the user with a
login page.

The user enters their username and password across an SSL connection to the WAP server.
The WAP server looks up the username in the Directory service component across an LDAP
connection. The Directory service returns the user’s IID number. This number is then used
to verify the user’s password in a local disk file. Upon successful login, the WAP server
redirects the user back to the application with an authentication cookie. See the Web-user
Authentication Protocol document for a detailed discussion on how this authentication
occurs.

3.2 The WAP Password File

The WAP server maintains a local disk file that contains three fields:

1) User's IID number,

2) User's encrypted password, and

3) Enabled bit.

The user IID number is a unique number assigned to every user on the intranet. An IID is
created by an administrator when a user is added to the system. It should never change. The

DOC Intranet Architecture 3

passwords are encrypted using the NBS DES algorithm (used by Unix) or another secure
encryption algorithm. The last field in the file is a boolean value representing whether or not
the account has active status. Disabled accounts cannot be logged in to.

3.3 Security

Because the WAP server is the central security system for the Intranet, the machine it runs on
must to be as secure as possible. A disk file resides on the server that contains all of the
intranet users’ IID numbers and their encrypted passwords. Anyone with access to this file
can potentially infiltrate the intranet.

Only SSL connections can be made to the WAP server to prevent the sniffing of user
passwords when they are sent from the user's browser across the intranet (or internet) to the
WAP server. After a user's initial login, their password never needs to be sent across the
network again.

3.4 Support Software

The WAP authenticator is a Java servlet. It needs a servlet container in order to run.
Additionally, the authenticator is accessed via the WAP protocol that sits on top of the HTTP
protocol. Therefore, the WAP server machine needs to have a web server running on it to
provide the entry point for requests for authentication from the various intranet applications.

Figure 1 shows the WAP application as a servlet inside a servlet container communicating
with a web server with a servlet adapter. AJP is used over this communication channel.

3.5 The Hardware

The WAP server machine is shown in Figure 1 as a single machine. It is possible to
distribute it across two or more separate physical machines. The dotted line in the figure
indicates the division point. The servlet container can exist and execute on one physical
machine and the web server and jserv adapter may exist on another. In a heavily loaded
environment, the web server depicted may actually be several web servers (each on a
separate machine) all configured to operate together. The same load-balancing mechanism
can be arranged for the servlet containers as well.

4 The Directory Server
The directory server contains the directory service application for the intranet. It is labeled in
figure 1 as directory.doc.gov. This service stores information about the intranet's users
including their IID numbers, contact information, and preferences for intranet applications.
It also stores alternate usernames (aliases) for the user so legacy applications can be accessed
without logging into them separately. The directory also stores information about the various
applications on the intranet such as which applications are trusted and which connections
have to be SSL.

As mentioned, the directory service is an LDAP directory.

DOC Intranet Architecture 4

The directory service is accessed by the WAP server and by applications directly. In order to
access (and maintain) the information in the directory, two applications (servlets) exist that
interface with the service. The first, the Directory Management application, allows users to
access information about themselves and other users. Users can also use this program to
update information about themselves. The second application is the Group Services
application. It is a helper application used by other intranet applications to perform more
complex lookups into the Directory service hierarchical structure.

4.1 The Directory Management Application

The Directory Management application is a Java servlet that allows users to access and
update information in the intranet directory. It is envisioned to have a database backend that
is used to enforce user permissions and roles in the directory. Users have certain roles with
certain access permissions. Users can modify most of the information about themselves and
users designated as administrators can modify information about other users as well.

This application performs simple queries in the intranet directory. For more complex queries
and lookups, this application makes requests to the Group Services application.

Figure 1 shows that the Directory Management application interfaces to the Directory
Service using LDAP and with the Group Services application using IACP.

4.2 The Group Services Application

The Group Services application is also a Java servlet. However, users do not directly access
this application. It is a helper application for accessing information in the Directory service
that may not be easily obtained through the LDAP interface. This application is accessed
using the Inter-Application Communications Protocol, IACP (over HTTP).

4.3 Support Software

Both of these applications are servlets and thus are accessed over HTTP. Therefore, both
applications need to be paired with a web server as well as a servlet container for correct
operation. Figure 1 shows a web server and a servlet container on the directory server
machine.

4.4 Hardware

The directory component may be distributed among more than one machine, separating the
servlets and the web servers from each other. Also, the LDAP Directory service could
reside on a separate machine. Again, the dotted lines in Figure 1 indicate these division
points. This component may exist on four separate machines.

4.5 Summary

The Directory Management application and the Group Service application can be thought of
as regular intranet applications. The Group Services application is unique in that most
applications on the intranet will be communicating with it to obtain information about users.

DOC Intranet Architecture 5

5 The Portal Application

The last component depicted in Figure 1 is the portal server (portal.doc.gov). The portal
application represents a typical application in the intranet. It performs almost every task that
any other application might perform, so it is a good sample application. It is envisioned to be
a modified version of Jetspeed, the Java-Apache open source portal product. As such, it
needs a servlet container and a web server in order to integrate into the Intranet environment.

The portal server communicates with various applications on the intranet and creates a portal
page of information for a logged in user. As such, the portal application interacts with the
Directory Management application via the IACP protocol. It also communicates directly with
the directory service to get configuration information about the various applications that are
included in the portal.

6 Other Applications

Other applications behave as the ones already outlined. Published APIs make the design and
implementation of intranet applications easier. The API definitions are in Appendix B: WAP
Client API for the DOC Intranet and Apendix G: DOC Inter-Application Communication
Protocol API. APIs exist for the three most common web development languages (Java,
Perl, and PHP).

7 Architecture Features

7.1 Single Sign-On

The single sign-on feature of the Intranet is implemented using the WAP server and cookies.

When an application, such as the portal server, is accessed by a user, the application checks
to see if the user has logged in. If the user has not yet logged into the intranet, the application
will redirect the user's browser to the WAP server. The user may log in and be given a
cookie to send to the application. This cookie stores the user's authentication information
and is automatically sent whenever the user accesses an application on the Intranet. This
allows users to log into the intranet once and maintain an authentication cookie around to log
into other applications after that. See Appendix A: Web-user Authentication Protocol for a
step-by-step description of this process.

The important point to note is that the application does not communicate with the WAP
server directly. Rather, the user’s browser makes a request to the WAP server on behalf of
the application that the user is attempting to connect to.

7.2 Inter Application Communication

Applications are able to communicate with each other via the Inter-Application
Communication Protocol, IACP. This protocol allows applications that trust each other to
share information about the intranet users. See the [IACP] document for a detailed

DOC Intranet Architecture 6

description of this protocol and the [IACP-API] document for a description of the APIs for
Java, Perl, and PHP for inter-application communication.

8 Other Issues
Hardware requirements must be defined.

Addition of proxy servers should be considered.

DOC Intranet Architecture 7

Figure 1 Intranet Components

directory.doc.gov
(Linux)

Directory Service

Server

 Servlet Container

Group
Services Dir Mgmt

ajpv12

ajpv12

LDAPLDAP

Apache
mod_jserv

adapterHttpDir. Mgmt
 Entry Point

IAP

Group Service
 Entry Points

portal.doc.gov
(Linux)

Apache
mod_jserv

adapterHttp

Servlet Container

Jetspeed

ajpv12

Server

LDAP

IAP

login.doc.gov
(Linux)

Server

Apache
mod_jserv

adapter
Http

Data

Servlet Container

WAP

disk file

ajpv12

LDAP

WAP entry
point

Portal entry
point

DOC Intranet Architecture 8

Appendix A: Web-user Authentication Protocol

Version: 1.0
Revised: 2000.11.12

1 Introduction

This document describes the Web-user Authentication Protocol (WAP). WAP is a protocol that
can be used to authenticate users to untrusted web-based applications over an insecure network.

2 Requirements
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119]. An implementation is not
compliant if it fails to satisfy one or more of the MUST or REQUIRED level requirements for
the protocols it implements. An implementation that satisfies all the MUST or REQUIRED level
and all the SHOULD level requirements for its protocols is said to be "unconditionally
compliant"; one that satisfies all the MUST level requirements but not all the SHOULD level
requirements for its protocols is said to be "conditionally compliant."

For WAP to function, three components are required: a web browser for the user, an application,
and an authenticator. A directory service should be used in conjunction with WAP to provide
user identification to the authenticator and applications.

2.1 Protocol Requirements

This protocol is designed to:

• Allow for single-sign-on for all applications using the WAP.

• Allow for users to divulge passwords only to an authenticator, never to an
application.

• Disallow applications from using any user’s authentication information for
authenticating against another application.

• Allow applications, at their own discretion, to provide a “public face” level of service
to users who have declined to authenticate.

2.2 Web Browser Requirements

The web browser MUST support cookies, as described in [RFC2109]. Cookies allow users'
authentication information to persist over multiple applications (one login per session).

The web browser MUST support HTTP Redirection.

The web browser MUST support SSL, as described in [SSL].

DOC Intranet Architecture 9

2.3 Application Requirements

The application MUST support HyperText Transfer Protocol (HTTP), as described in
[RFC2616]. HTTP is used to service users' requests.

The application MUST support setting and receiving cookies, as described in [RFC2109].
Cookies are one method for passing user authentication information from the authenticator to the
application.

The application SHOULD support SSL, as described in [SSL].

The application SHOULD support public key encryption as defined in [CRYPTO].

An application's level of support for the above requirements will determine the level of security
an application can expect by implementing WAP and using a WAP authenticator.

2.4 Authenticator Requirements

The authenticator MUST support setting and receiving cookies, as described in [RFC2109].
Cookies are used to persist user authentication information across multiple requests from the user
to the authenticator and applications.

The authenticator MUST support HyperText Transfer Protocol (HTTP), as described in
[RFC2616]. HTTP is used to service users' requests.

The authenticator MUST support SSL as described in [SSL].

The authenticator MUST support public key encryption as defined in [CRYPTO].

3 Terminology
anonymous application ticket

An application ticket that does not include a user IID. These are provided to users who
decline to supply a username and password, and instead wish to access applications
‘public face’.

application

A system that provides a service to users through an HTML interface via HTTP, as
defined in section 6.0.

application IID

The intranet ID (IID) associated with a specific running instance of an application.

DOC Intranet Architecture 10

application ticket

A data element that holds the authentication information for a user. The authentication
information is time-stamped, and contains rights for a user to access a particular
application. Application tickets are stored on a user’s browser as cookies.

authenticator

A specialized application that provides user authentication services to applications, as
defined in section 5.0.

browser, or web browser

A standard web browser, as defined in section 2.1.

CGI variable

A POST or GET parameter used in web requests. See [RFC2616].

cookie

Data that is passed from an application to a web browser, stored by the web browser, and
returned to an application at a future time. As described in [RFC2109].

directory service

A service that provides user and application information. The directory service also
stores the public keys of all applications.

Intranet ID (IID)

A unique string which identifies an object maintained in the directory service. For the
purpose of this document, IIDs identify either users or application instances.

legacy application

A application which does not support user identification through the means of the user’s
intranet ID (user IID).

legacy application username

A login name used by a user to identify himself to a legacy application.

reference implementation

This protocol will initially be developed for the Department of Commerce’s Intranet.
This initial product is referred herein as the reference implementation.

DOC Intranet Architecture 11

session ticket

A data element that holds WAP authentication information for a user. The authentication
information is time-stamped. Session tickets are stored on a user’s browser as cookies.

user

A person using a web browser and the authenticator to access one or more applications.

user IID

The Intranet ID (IID) identifying a user.

WAP username (Intranet username)

A username assigned to a user’s intranet account. This username can be changed, but is
always associated with the user’s unique user IID.

WAP password

A password assigned to a user’s intranet account. The password may be changed by the
user. The password is always associated with a single user IID.

4 Protocol Overview
To authenticate users, WAP is implemented on an authentication server and application servers.
The authenticator authenticates users by WAP username and WAP password over an SSL
connection, provides application tickets to users, and provides applications with the ability to
validate sessions through cryptographic verification of the session ticket digital signatures.

WAP additionally provides a mechanism to time-out user’s session tickets through user
inactivity, and to renew tickets prior to expiration in a method that is transparent to users.

From the user's perspective, an authenticated session usually beings when the user attempts to
access an application with a web browser. When the application does not find an application
ticket in the set of cookies and CGI variables presented by the web browser, the application will
consider the user to be not authenticated, and will return a redirect to the authentication ticket
service login page.

If the authentication server finds a valid session ticket, it verifies the authenticity of the session
ticket using its own private key to verify the session ticket digital signature, and verifies that the
conditions of use presented in the session ticket are met. The single condition of use listed on
the session ticket is an “expire time” beyond which the ticket is no longer valid. The session
ticket also contains the Intranet ID (IID) for the user.

With a valid session ticket in hand, the authenticator creates an application ticket allowing the
user to talk to the referring application. The application ticket consists of the user’s IID, the
application’s IID, the source IP address of the web browser connection, and the renew time for
the ticket. If the application is a legacy application requiring an application-specific username

DOC Intranet Architecture 12

rather than a user IID, the authenticator looks up the appropriate application username for this
user and this app, and includes it in the application ticket.

This ticket is forwarded to the application via CGI variables and cookies. Upon receiving the
application ticket, the application can verify its authenticity by checking the digital signature
using the authenticator’s public key.

When presented the login page by the authenticator, the user can elect not to authenticate by
selecting the cancel option. In this case, a special application ticket called an anonymous
application ticket is created. Anonymous application tickets lack both a user IID field and an
application username field. The authenticator does not create a session ticket when an
anonymous application ticket is created. When presented with an anonymous application ticket,
applications may decide to either reject the anonymous access, or present a “public face”
interface to the user.

5 Authenticator
The authenticator is responsible for user login, providing authentication information to
applications, and renewing session tickets. This functionality is provided by the ticket service.
In addition, the authenticator is responsible for providing a service for adding, deleting and
modifying users and passwords. This functionality is provided by the password service.

Each of the authenticator’s functions is a service accessible through a URL, using HTTP or
HTTPS, HTML forms or CGI variables, and cookies. Both authenticator services are described
in detail.

5.1 Ticket Service

5.1.1 Overview

The ticket service authenticates users by WAP username and WAP password. If the user
authenticates correctly, the ticket service creates a session ticket and an application ticket, as well
as a digital signature for both the session and application tickets. Both the session ticket digital
signature and the application ticket digital signature are created with the authenticator’s private
key. If the user cancels the login, the ticket service creates only an anonymous application ticket
(and application ticket digital signature), but no session ticket.

The session ticket is a simple ticket that is used only by the authenticator during later
authentication requests by the same user. During the initial successful login, the authenticator
returns the session ticket and its digital signature as cookies to the users browser. Later, when
the user’s browser contacts the authenticator for an application ticket renewal, the authenticator
can verify that the user’s browser has a session ticket with a valid digital signature, and can
check to ensure that the session ticket has not expired. If the session ticket has expired, the
authenticator redirects the user’s browser to a page where the user can re-login. If the session
ticket has not expired, than a new lease is granted to the user’s browser by pushing a new session
ticket cookie (and digital signature) with a later expiration date to the browser. In the same
transaction, a new application ticket (and digital signature) with a later renew date is pushed via
CGI variables to the browser for use by the referring application.

DOC Intranet Architecture 13

The following table defines the content of the session ticket.

Session ticket format

Name Value

USER_IID The user-intranet id uniquely identifying this user on the Intranet

EXPIRE The date-time stamp when this session is no longer valid

Session tickets are only created when a user correctly submits a valid username and password.
Canceling the login page causes the authenticator to create an anonymous application ticket, but
no session ticket. The session ticket is formatted simply as a list name=value pairs, separated by
the pipe character. For example, a user might have a session ticket of the following form

USER_IID=36925|EXPIRE=Fri, 31 Dec 1999 23:59:59 GMT

The session ticket and digital signature are returned to the browser with setCookie header lines
of the following form.

Set-Cookie: SESSION_TICKET_TXT=<plaintext session ticket>;
Set-Cookie: SESSION_TICKET_SIG=<session ticket dig. signature>

In addition to the session ticket, the authenticator creates an application ticket for the application
that redirected the user’s browser to the authenticator’s login page. This application ticket
contains the user’s IID, the application’s IID, the IP address of the user’s browser (or proxy), and
the time after which the application ticket needs to be renewed. If the user declines to
authenticate, the USER_IID field is not included. A missing USER_IID field defines an
anonymous application ticket. If the application is a legacy application requiring a application-
specific username rather than a USER_IID, the generated ticket includes both a USER_IID and
an APP_USER field.

The following table defines the content of the application ticket.

Application ticket format

Name Value

USER_IID The user-intranet id uniquely identifying this user on the Intranet. This field is not
present in anonymous application tickets.

APP_USER For legacy applications, the username with which this user authenticates to the
application. This field is only included with tickets created for legacy
applications.

APP_IID The application intranet id uniquely identifying this application on the Intranet

USER_IP The IP address from which the browser connected to WAP. May be the browser’s
IP or the proxy server’s IP.

DOC Intranet Architecture 14

RENEW The date-time stamp after which the session ticket should be renewed.

The application ticket is formatted as name=value pairs, separated by a pipe character. Below is
a sample ticket.

USER_IID=3692|APP_USER=john_smith|APP_IID=00032|USER_IP=192.168.
1.128|RENEW= Fri, 31 Dec 1999 23:54:59 GMT

The application ticket is digitally signed using the authenticator’s private key. The plaintext
application ticket and its digital signature are sent to the browser as CGI variables of the
following form.

rmt_cookie=APP_TICKET_TXT:<plaintext application ticket>
rmt_cookie=APP_TICKET_SIG:<application ticket dig. signature>

Upon successful authentication, the user’s browser is redirected to the application that initially
redirected the user to the login page. By default, this is the URL of the referer header line.
However, if the application has provided a RET_URL CGI variable, that value is used as the
redirection page. Applications SHOULD provide the RET_URL CGI variable to positively
notify the authenticator of the redirect target.

Before redirecting the browser to RET_URL or header.referer, the authenticator verifies that the
redirection URL is a valid redirection URL for this application. In the referenced
implementation, this is done by consulting the directory service.

5.1.2 Request Input Parameters

The URL for accessing the reference implementation ticket service is https://login.doc.gov.

The ticket service accepts requests via HTTPS. The following CGI variables are processed. All
other present CGI variables are included unchanged as CGI GET variables on the response.

CGI Variables processed by the Ticket Service

Name Value

WAP_ANON A flag indicating that the user has selected the cancel option from the login page.
If this flag is present, an anonymous ticket will be created for the user.

WAP_USER The username the user provides to identify himself to the authenticator. There is
a one to one relationship between WAP_USER and user IID.

WAP_PASS The user’s WAP password.

APP_IID The application intranet id uniquely identifying the refering application on the
Intranet

RET_URL The URL that the WAP server should redirect the user’s browser to once the
user is authenticated.

DOC Intranet Architecture 15

The ticket service checks for the following cookies to determine if the user is currently logged in.

Cookies accepted by the Ticket Service

Name Value

SESSION_TICKET_TXT Encrypted Session Ticket

SESSION_TICKET_SIG Digital signature of the session ticket

5.1.3 Execution

The execution of the ticket service is described using inputs, processes, decisions, and output. A
flowchart representing the flow of execution is provided in the figure on the next page.

DOC Intranet Architecture 16

Rece ive
H T T P S
R e q u e s t

req .cook ie
S E S S I O N _ T I C K E T _ T X T

found?

Y e s

digi ta l
s ignature
correct?

Y e s

No

Expire
t ime not

e x c e e d e d ?

req.cg i .
R E T _ U R L

 found?
No

req .heade r
re fe re r se t? No

Return
E X P I R E D _ L O G I N

Page

Log
Pro toco l
Vio la t ion

Return
B A D _ S I G

Page

Return
W A P _ L O G I N

Page

Return
L O G I N _ S U C C E S S

Page

Authenticator Ticket
Service Decision Tree
Th is Dec i s ion T ree i s f o l l owed when

W A P r e c e i v e s a H T T P S
(H T T P o v e r S S L) c o n n e c t i o n

Crea te Sess ion T icke t
S e t C o o k i e S E S S I O N _ T I C K E T _ T X T

Crea te Sess ion T i cke t S igna tu re
S e t C o o k i e S E S S I O N _ T I C K E T _ S I G

M a y U s e r
access App?

Create App l i ca t ion T icke t
r e s . c g i . r m t _ c o o k i e = A P P _ T I C K E T _ T X T :

Create App l ica t ion Tk t S ignature
r e s . c g i . r m t _ c o o k i e = A P P _ T I C K E T _ S I G :

Y e s

Return
U S E R _ A P P _ D E N I E D

PageNo

req.cg i .
 W A P _ U S E R

 found?

Passwo rd
 & U s e r n a m e

correct?

Y e s
Return

I N V A L I D _ L O G I N
Page

No

req.cg i .
W A P _ P A S S

 found?

Y e s

Y e s

req.cg i .
A P P _ I I D
found?

Y e s

Y e s

No

Y e s Y e s

U S E R _ I I D
A P P _ I I D

A P P _ U S E R (l e g a c y o n l y)
USER_IP
R E N E W

U S E R _ I I D
E X P I R E

Redi rect to
req .cg i .RET_URL

Redi rect to
req.header . re ferer

User's
W A P a c c o u n t

ac t ive?

Return
I N A C T I V E _ A C C O U N T

Page

Lookup user I ID
f r o m W A P _ U S E R

No

Y e s

req.cg i .
W A P _ A N O N

found?

Genera te
A n o n y m o u s A p p

Ticket

Y e s

No

No

No

No

No

R E T _ U R L
al lowable

re fe re r
a l lowable

Y e s Y e s

NoNo
Log

Pro toco l
Vio la t ion

Return
B A D _ R E F E R E R

Page

Log
Pro toco l
Vio la t ion

Return
B A D _ R E T _ U R L

Page

req.cook ie .
S E S S I O N _ T I C K E T _ S I G

found?

No

DOC Intranet Architecture 17

Commentary on Authenticator Ticket service Decision Tree

Receive HTTPS request This is the starting point for all transactions. A
HTTPS (SSL only) connection is made to the
well-known WAP Authenticator Ticket service
URL.

req.cookie.SESSION_TICKET_TXT
found?

Check to see if the user submitted a session ticket.

req.cookie.SESSION_TICKET_SIG
found?

Check to see if the user submitted a signature for
the session ticket. Session tickets are invalid
without a valid signature..

req.cgi.WAP_ANON found? Check to see if the anonymous flag has been set.
This flag is set when the user declines to
authenticate by clicking the Cancel button on the
WAP_LOGIN page. Anonymous users receive an
anonymous application ticket and no session
ticket.

Generate Anonymous App Ticket An anonymous application ticket has no
USER_IID field, and no APP_USER field. Users
who have not logged into the intranet receive
anonymous application tickets.

req.cgi.WAP_USER found? The authenticator examines the request to see if
the CGI variable USER_IID has been included. If
it has not been included, then it is not a request
coming from the login page. Normal processing
ensues.

req.cgi.WAP_PASS found? The authenticator examines the request to see if
the CGI parameter WAP_PASS has been
included. If it has not been included, then it is not
a request coming from the login page. Normal
processing ensues.

Return WAP_LOGIN Page The user is presented a form that prompts them to
supply username and password. These values are
sent to the authenticator as CGI variables named
WAP_USER and WAP_PASS. Also, a cancel
button is present, which when clicked must set the
CGI variable WAP_ANON.

Password & Username correct? The authenticator verifies the username and
password match. The password should be stored
in a hashed format to reduce damage if
compromised. The reference implementation will

DOC Intranet Architecture 18

store the hashed passwords, along with user IID
and account disable flag, in a local file.

Return INVALID_LOGIN page This page is returned if the user does not exist or if
the password is incorrect. It should either have a
link back to the login page or a form to resubmit
the username/password information.

Lookup user IID for WAP_USER The directory service is queried to find a user
Intranet ID (IID) matching this username.

User’s WAP account active? Administrators can disable any user’s WAP
account, which effectively prevents the user from
accessing any WAP-enabled account using WAP
authentication. This checks the locally stored flag
to see if this user’s account has been disabled.

Return
INACTIVE_ACCOUNT page

A page notifying the user that their Intranet login
has been disabled.

Digital Signature Correct? Using the WAP public key, verify the digital
signature contained in SESSION_TICKET_SIG
against the plaintext in SESSION_TICKET_TXT.

Log Protocol Violation An invalid ticket has been received. All such
attempts should be logged so that administrators
can take appropriate action.

Return
BAD_SIG
Page

A page should be returned to give the user further
guidance on appropriate actions if the
SESSION_TICKET_SIG is not genuine. The
contents will depend on site preferences – users
could be notified that the ticket was rejected, or a
generic ‘Login Failed’ message could be
displayed.

Expire Time
not exceeded?

The EXPIRE attribute is retrieved from the
authenticated SESSION_TICKET. It is compared
with the current time on the server. If the current
time is earlier than the EXPIRE time, then the
session is still valid, and new application and
session tickets should be created for the user. If
the EXPIRE time has elapsed, then the user should
be presented a page noting this, and linking back
to the login page.

DOC Intranet Architecture 19

Return
EXPIRED_LOGIN
Page

This page notifies the user that their session has
timed out due to inactivity, and presents a
hyperlink or a login form that allows them to
reestablish their session.

Create Session Ticket
Set Cookie SESSION_TICKET_TXT
Create Session Ticket Signature
Set Cookie SESSION_TICKET_SIG

The user has a valid session ticket, and has had
recent activity as defined by this protocol.
Construct a new session ticket with a new
EXPIRE time. Setup the
SESSION_TICKET_TXT and
SESSION_TICKET_SIG cookie so that they are
pushed to the user’s browser with the next page.

Req.cgi.APP_IID found? Check the incoming request to see if a CGI
variable named APP_IID is included. If it is, then
the user was referred to the authenticator by that
app, possibly due to a application ticket needing to
be renewed, and possibly because the referring app
had no application ticket at all for this user.

May user access App? Determine if the user has an account managed by
WAP for this application. This process is
considered to be implementation dependent. The
reference implementation will consult the
directory service to make this determination.

Return
USER_APP_DENIED
page

This page notifies the user that his access to the
application is not managed by WAP. The new
SESSION_TICKET is sent with this page to
update the EXPIRE timestamp for the users
session.

Create Application Ticket
res.cgi.rmt_cookie=APP_TICKET_TXT:…
Create Application Ticket Signature
res.cgi.rmt_cookie=APP_TICKET_SIG:…

The user has been authenticated as being able to
communicate with this application. Create an
application ticket and ticket signature for this app,
and setup the APP_TICKET_TXT and
APP_TICKET_SIG rmt_cookie CGI variables to
be sent with the next page.

Req.gci.RET_URL found? Check the request to see if it contains a CGI
variable named RET_URL. This is the URL that
the referring application wishes us to redirect the
user to.

DOC Intranet Architecture 20

RET_URL allowable? Check to see if the RET_URL URL is a valid URL
for this application. The reference implementation
will consult the directory service to make this
determination.

Redirect to ret.cgi.RET_URL Redirect the user to the RET_URL, with all CGI
variables and headers set previously in this tree.

Return
BAD_RET_URL page

This page notifies the user that the referring
application resides at an unregistered URL and
cannot be redirected to.

Req.header.referer set? Check the request to see if it contains a referrer
header. The referrer header can be used as an
alternate to the RET_URL variable. If present, we
should redirect the user back to the referring URL.

referrer allowable Check to see if the referrer URL is a valid URL
for this application. The reference implementation
will consult the directory service to make this
determination.

Redirect to req.header.referer Redirect the user to the referring URL, with all
CGI variables and headers set previously in this
tree.

Return
BAD_REFERER page

This page notifies the user that the referring
application resides at an unregistered URL and
cannot be redirected to.

Return
LOGIN_SUCCESS
Page

A page indicating the login was successful should
be presented if we cannot ascertain a location to
redirect the user’s browser to.

5.1.4 Response Output

Pages Returned by the Authenticator Ticket Service

WAP_LOGIN page

• WAP_USER input field

• WAP_PASS input field

• login button

• cancel button, which sets the WAP_ANON CGI variable

DOC Intranet Architecture 21

• RET_URL hidden field, if available

• APP_ID hidden field, if available

INVALID_LOGIN page

• Text message informing user that login attempt was invalid

• WAP_USER input field

• WAP_PASS input field

• login button

• cancel button, which sets the WAP_ANON CGI variable

• RET_URL hidden field, if available

• APP_ID hidden field, if available

EXPIRED_LOGIN page

• Text message informing user that the session has expired due to inactivity

• WAP_USER input field

• WAP_PASS input field

• login button

• cancel button, which sets the WAP_ANON CGI variable

• RET_URL hidden field, if available

• APP_ID hidden field, if available

USER_APP_DENIED page

• Site dependent message informing the user that they are not currently configured to
access this application.

• Button to allow the user to continue anonymously as an unauthenticated user.

DOC Intranet Architecture 22

INACTIVE_ACCOUNT

• Message informing the user that their Intranet account has been disabled

LOGIN_SUCCESS page

• Message informing the user that they have successfully logged into the Intranet.

BAD_SIG page

• Message informing user that the SESSION_COOKIE submitted failed the digital
signature test.

BAD_RET_URL

• Message informing user that the return application URL is invalid for the application.

BAD_REFERER

• Message informing user that the return application URL is invalid for the application.

Redirects returned by the Authenticator Ticket Service

Redirect to req.cgi.RET_URL

• Redirect to the application the user is attempting to authenticate to

Redirect to req.header.referrer

• If req.cgi.RET_URL is not set, then we can redirect to req.header.referrer, if available.

Authenticator Output

Once the authenticator has generated the application and session keys, it must redirect the user to
a URL under the control of the referring application. The authenticator either redirects to the
URL specified in the request’s RET_URL CGI variable, or the URL specified in the request’s
referrer header. If the authenticator finds either of these URL’s, the authenticator is responsible

DOC Intranet Architecture 23

for first verifying that the URL is an allowable URL for the application. The reference
implementation consults the directory service to make this determination.

When redirecting the user’s browser, the authenticator will set up to two header fields which
cause, directly or indirectly, cookies to be stored on a users browser. The below table defines
these header fields

Headers set by the Authenticator

Name Value

Location URL to redirect to, either req.cgi.RET_URL or
req.header.referrer

SetCookie SESSION_TICKET_TXT=<session ticket>;secure

SetCookie SESSION_TICKET_SIG=<digital signature of session ticket>

The first header, Location, is a standard HTTP header for redirecting browsers to a different
URL. It is used in this instance to return the browser to the referring application.

The next two headers are SetCookie type headers, the standard HTTP header for setting a cookie
on the user’s browser. Since no domain or path is defined, this cookie will default to being
returned only to the authenticator host, and will be returned to any URL on that host. The
SESSION_TICKET_TXT contains the actual session ticket that states that the user has logged
into the Intranet, while the SESSION_TICKET_SIG contains the digital signature verifying the
authenticity of the ticket.

The authenticator also needs to set cookies named APP_TICKET_TXT and APP_TICKET_SIG,
but cannot do so directly via the SetCookie header. The problem is that these two tickets must
have their domain set to the application’s domain, not the authenticator’s domain. Since
browsers can be configured to reject cookies set by a server on one domain for return to servers
in another domain, an alternate method has been devised. A CGI variable, rmt_cookie, is added
to the page when redirecting to the remote application. Since the remote application is WAP-
enabled, it recognizes this CGI variable, and realizes that it must itself set a cookie on the user’s
browser, to be returned itself on successive hits by the user’s browser.

CGI variables set by the Authenticator

Name Value

rmt_cookie APP_TICKET_TXT=<plaintext application ticket>

rmt_cookie APP_TICKET_SIG=<application ticket digital signature>

This cooperation between the WAP authenticator and WAP-enabled applications allows the
authenticator to effectively set cross-domain cookies on users’s browsers.

DOC Intranet Architecture 24

Currently, the only defined rmt_cookie values are APP_TICKET_TXT and APP_TICKET_SIG.
Applications should ignore attempts to set other cookies via this mechanism.

5.2 Password Service

5.2.1 Overview

The password service provides a means of changing a user's password. The password service is
just a basic WAP client application, but is covered in this protocol specification because its
functionality is required for any authenticator service to be complete. WAP Server
implementations MUST implement the password service. WAP Servers conform to the WAP
client interface to implement the password service. See section 6.0 for details of the WAP client
interface. Specifically, this means that the password service has an Intranet Application IID
assigned to it.

The password service is designed to be accessed either through the HTML user interface using a
HTTP form. The HTML interface can be customized on a per-site basis, but the form interface,
including form variable names and allowable values, MUST conform to this specification.

5.2.2 Request Input Parameters

The URL for accessing the reference implementation password service is
https://login.doc.gov/password.

The password service accepts requests only via HTTPS. The following CGI variables are
processed. All other CGI variables are ignored.

CGI Variables processed by the Password Service

Name Value

OLD_PASSWORD The user's current WAP password.

NEW_PASSWORD_1 The user's requested new WAP password.

NEW_PASSWORD_2 The user's requested new WAP password, as typed in a
second time for confirmation.

The password service checks for the following cookies to determine if the user is authenticated
for this application. Anonymous access is disallowed. The handling of these items is per section
6.

Cookies accepted by the Password Service

Name Value

APP_TICKET_TXT Encrypted application Ticket

APP_TICKET_SIG Digital signature of the application ticket

DOC Intranet Architecture 25

5.2.3 Execution

The server should first validate that the client is authenticated, as described in section 6.0.

For authenticated users, the WAP_CHG_PASSWORD page is presented. If the user
successfully enters the old password and a valid new password, the WAP_OK_PASSWORD
page should be presented.

If the OLD_PASSWORD field is correct, the WAP_BAD_PASSWORD page is presented,
giving the user another chance to change the password.

If NEW_PASSWORD_1 does not match NEW_PASSWORD_2, then the
WAP_TYPO_PASSWORD page is presented, giving the user another chance to change the
password.

If the NEW_PASSWORD fields do not comply with site password requirements, then
WAP_INVALID_PASSWORD page is returned, giving the user a chance to choose a different
password.

In addition, servers MAY allow administrators to configure additional security features, such as
a maximum number of retries before the account is locked out. These additional features can in
no way interfere with the operation of the prescribed interface.

5.2.4 Response Output

Pages Returned by the Authenticator Password Service
WAP_CHG_PASSWORD page

• OLD_PASSWORD password input element

• NEW_PASSWORD_1 password input element

• NEW_PASSWORD_2 password input element

• submit button

• cancel button

WAP_TYPO_PASSWORD page

• Text explaining that passwords do not match

• OLD_ PASSWORD password input element

• NEW_PASSWORD_1 password input element

DOC Intranet Architecture 26

• NEW_PASSWORD_2 password input element

• submit button

• cancel button

WAP_BAD_PASSWORD page

• Text explaining that the old password is not correct

• OLD_ PASSWORD password input element

• NEW_PASSWORD_1 password input element

• NEW_PASSWORD_2 password input element

• submit button

• cancel button

WAP_INVALID_PASSWORD page

• Text explaining that the new password is insecure, and describing the rules in effect for
passwords.

• OLD_ PASSWORD password input element

• NEW_PASSWORD_1 password input element

• NEW_PASSWORD_2 password input element

• submit button

• cancel button

WAP_OK_PASSWORD page

• Text indicating that password was changed successfully.

DOC Intranet Architecture 27

6 WAP-enabled Applications (WAP Client Interface)

6.1 Overview

The behavior a WAP-enabled application must exhibit is simpler than the behavior a WAP
authenticator must exhibit. Basically, the WAP-enabled application, upon receiving a request for
a resource that requires authentication, must check the incoming request for cookies named
APP_TICKET_TXT and APP_TICKET_SIG. If these cookies are found, the
APP_TICKET_SIG is verified against the APP_TICKET_TXT, using the public key of the
authenticator. Successful comparison means that the ticket is authentic. The ticket is then
checked for validity; USER_IP address is verified, APP_IID is verified, and RENEW time is
verified. If all these pass, the user is authentic.

The first time an authenticator sends an application ticket to the application, it is not in the form
of a cookie. Since the authenticator cannot set a cookie to be returned to the application, the
authenticator instead sets a pair of CGI variables, both named ‘rmt_cookie’ (See section 5.1.4).
One of the pair will be the TXT portion, and the other the SIG portion. Upon receiving a request
with this CGI variable pair, the WAP-enabled application must verify the authenticity of the
rmt_cookie by calculating a digital signature of the TXT portion with the authenticator’s public
key, and compare it with the SIG portion. If the two compare correctly, the rmt_cookie is
considered authentic. The application must redirect the browser back to very URL the browser is
requesting, but with a SetCookie header set for the contents of both rmt_cookie variables (TXT
and SIG portions) the application received.

Currently, only APP_TICKET_TXT and APP_TICKET_SIG are valid rmt_cookie entries. All
others should be ignored.

If the WAP-enabled application gets a request without a APP_TICKET_TXT and
APP_TICKET_SIG cookie pair, nor a rmt_cookie CGI variable pair containing
APP_TICKET_TXT and APP_TICKET_SIG, or if he receives a ticket which has exceeded the
renewal time, the application must set a CGI variable named APP_IID containing this
application instance’s intranet id, and must set a CGI variable named RET_URL containing the
URL the user should return to once authenticated, and must redirect the user’s browser to the
authenticator’s ticket service URL.

6.2 Request Input Parameters

The WAP-enabled application accepts requests via HTTP or HTTPS.

No CGI variables are needed when requesting a resource from a WAP-enabled application.

The WAP-enabled application checks for the following cookie.

Cookies handled by WAP-enabled Applications

Name Value

APP_TICKET_TXT The plaintext application ticket from the WAP
authenticator.

DOC Intranet Architecture 28

APP_TICKET_SIG The digital signature of APP_TICKET_TXT, signed
with the authenticator’s private key.

The WAP-enabled application checks for the following header.

HTTP CGI variables handled by WAP-enabled Applications

Name Value

rmt_cookie APP_TICKET_TXT:<plaintext application ticket>

rmt_cookie APP_TICKET_SIG:<application ticket digital signature>

6.3 Execution

The decision tree illustrated in the figure on the next page is followed each time a WAP-enabled
application receives a request for a resource that requires authentication.

DOC Intranet Architecture 29

Receive
HTTP or
HTTPS
Request

req.cookie.
APP_TICKET_TXT

found?

req.cgi.
rmt_cookie.

APP_TICKET_TXT
found?

Yes

No No

Yes

Digital
Signature
Correct?

Digital
Signature
Correct?

Yes

renew
time not

exceeded?

No No
Log

Protocol
Violation

Return
BAD_SIG

Page
Yes

No No

Ticket.
APP_IID
correct?

Ticket.
APP_IID
correct?

Ticket
USER_IP
correct?

Ticket
USER_IP
correct?

Log
Protocol
Violation

Return
BAD_IP
Page

No No

No No

SetCookie APP_IID
SetCookie RET_URL

Redirect to WAP authenticator

SetCookie APP_IID
SetCookie RET_URL

Redirect to WAP authenticator

User is authentic
Allow Application to handle
user's access to resource

User is Authentic
SetCookie APP_TICKET_TXT
SetCookie APP_TICKET_SIG

Redirect to this URL

WAP-enabled Application
Decision Tree

This Decision Tree is followed when a
WAP-enabled Application receives a

request for a page requiring
authentication via HTTP or HTTPS

renew
time not

exceeded?

Log
Protocol
Violation

Return
BAD_APP_ID

Page

req.cookie.
APP_TICKET_SIG

found?

req.cgi.
rmt_cookie.

APP_TICKET_SIG
found?

Yes Yes

No No

Ticket
USER_IID

found?

Ticket
USER_IID

found?

User is anonymous
Provide 'Public face' content

No No

Yes

Yes

Yes

Yes

Yes

Yes

DOC Intranet Architecture 30

Commentary on WAP-enabled Application Decision Tree

Receive HTTPS request This is the starting point for all transactions. A HTTP
or HTTPS connection is made for a resource
requiring user authentication.

req.cookie.APP_TICKET_TXT found? Check to see if the user’s browser has submitted a
cookie named APP_TICKET_TXT. This should
contain a plaintext application ticket.

req.cookie.APP_TICKET_SIG found? Check to see if the user’s browser has submitted a
cookie named APP_TICKET_SIG. This should
contain a digital signature.

req.cgi.rmt_cookie.APP_TICKET_TXT
found?

Check to see if the request contains a CGI variable of
the form rmt_cookie=APP_TICKET_TXT… This is
a request for the application to set a cookie,
supposedly on behalf of the authenticator.

req.cgi.rmt_cookie.APP_TICKET_SIG
found?

Check to see if the request contains a CGI variable of
the form rmt_cookie=APP_TICKET_SIG… This
should be a digital signature of APP_TICKET_TXT.

Digital Signature Correct? Use the authenticator’s public key to verify that
APP_TICKET_SIG is in fact a valid digital signature
of APP_TICKET_TXT. If it is, then the ticket is
authentic.

renew time not exceeded? Check to verify that the ‘expire time’ contained in
APP_TICKET_TXT has not been exceeded. If it has,
the application needs to obtain a new ticket by
redirecting the user to the authenticator.

Ticket USER_IP correct? Verify that the user’s browser is in fact connecting
from the address listed as USER_IP in the ticket.

Ticket USER_IID found? Check to see if a USER_IID is provided with the
ticket. If not, then the user is connecting in
anonymous mode.

Ticket APP_IID correct? Verify that the ticket contains this application’s
Intranet ID.

Log Protocol Violation An invalid ticket has been received. All such
attempts should be logged so that administrators can
take appropriate action.

DOC Intranet Architecture 31

Return BAD_SIG Page A page should be returned to give the user further
guidance on appropriate actions if the
APP_TICKET_SIG is not genuine. The contents will
depend on site preferences – users could be notified
that the ticket was rejected, or a generic ‘Login
Failed’ message could be displayed.

Return BAD_IP Page A page should be returned to give the user further
guidance on appropriate actions if the
APP_TICKET_TXT lists a USER_IP address that
does not match the IP the browser is currently
connecting from.

User is anonymous.
Return ‘public face’ content.

The user is not authenticated. The application may, at
its discretion, provide a ‘public face’ interface to the
anonymous user.

SetCookie APP_IID
SetCookie RET_URL
Redirect to WAP authenticator

If there is no application ticket, or if there is a session
ticket requiring renewal, redirect the user’s browser to
the authenticator. Set RET_URL to the URL the
authenticator should return the user to, and APP_ID
to this application’s IID.

User is authentic.
SetCookie APP_TICKET_TXT
SetCookie APP_TICKET_SIG
Redirect to this URL

The user is authentic, and the application needs to
persistently store the application ticket and signature
the user presented in a cookie on the user’s browser.
Set cookies for APP_TICKET_TXT and
APP_TICKET_SIG, and redirect the user back to this
URL.

User is authentic.
Allow application to handle user’s
 access to resource

The user is authenticated. It is now up to the
application to decide what, if any, content the
application wishes to provide the user.

6.4 Outputs

Pages Returned by the WAP-enabled Application

The WAP client API will provide default pages for the following. Applications are encouraged
to override this default behavior, and provide their own versions of the following pages.

BAD_SIG page

• Message informing user that the SESSION_COOKIE submitted failed the digital
signature test.

DOC Intranet Architecture 32

BAD_APP_ID page

• Message informing user that SESSION_COOKIE is invalid because it is not for the
application he intends to connect to.

BAD_IP page

• Message informing user that their session is invalid because their IP address has changed.

Redirects returned by the WAP-enabled Application

Redirect to WAP authenticator

• Redirect to the WAP authenticator URL after setting CGI variables APP_IID and
RET_URL.

Redirect to this URL

• Redirect to one’s own URL after setting APP_TICKET_TXT and APP_TICKET_SIG
cookies.

7 Scenarios
User requesting an application; user not authenticated. (See figure on the next page.)

DOC Intranet Architecture 33

User

Browser

WAP-enabled
Application

WAP
Authenticator
Ticket Service

Accepts HTTPS
connections only

1. Request for resource

2. req.cookie.APP_TICKET_TXT not found,
req.cgi.rmt_cookie APP_TICKET_TXT not found,

set res.cgi.RET_URL, res.cgi.APP_IID,
redirect to authenticator

3. Follow Redirect

4. cookie.SESSION_TICKET_TXT not found,
req.cookie.WAP_ANON not found,
req.cookie.WAP_USER not found,

Send Login Page

5. Submit form, with WAP_USER and
WAP_PASS as filled in by user

6. SESSION_TICKET not found,
WAP_ANON not found,

WAP_USER, WAP_PASS are correct,
WAP account is active (lookup)

Generate SESSION_TICKET (SIG+TEXT)
SetCookie SESSION_TICKET (SIG&TEXT)

ret.cgi.APP_IID found
User is allowed to access APP (lookup)

set res.cgi.rmt_cookie=APP_TICKET(SIG&TEXT),
req.cgi.RET_URL found,

RET_URL is valid (lookup)
redirect to RET_URL

7. Request for resource,
with req.cgi.rmt_cookie=APP_TICKET_TXT,

req.cgi.rmt_cookie=APP_TICKET_SIG

8. Cookie.APP_TICKET_TXT not found,
req.cgi.rmt_cookie=APP_TICKET_TXT found,
req.cgi.rmt_cookie=APP_TICKET_SIG found,

Digital Signature Correct (lookup WAP pub key),
Renew not expired, APP_ID correct, IP correct,

SetCookie APP_TICKET_TXT, APP_TICKET_SIG
redirect to self

9. Follow Redirect,
with header Cookie=APP_TICKET (TEXT & SIG)

10. Cookies APP_TICKET (TEXT & SIG) found,
Digital Signature is Correct,

Renew not expired, APP_ID correct, IP correct,
User is Authentic,

Return Resource (At App's Discretion)

WAP
Password
Archive

Directory Service

WAP Protocol Example
The user's browser initially has no

cookies for either domain
(authenticator or application), and

successfully requests a resource from
the application.

DOC Intranet Architecture 34

8 Encryption and Digital Signatures

8.1 Digital Signatures

All digital signatures will be per FIPS Pub 186.2 (See [FIPS186-2]. The reference
implementation will use RSA encryption using network byte order.

See [CRYPTO] for details.

9 Unresolved Issues

Browsers Using IP Address Pools

Need to determine if ISPs still use pools of IP addresses for web browsers, thus allowing a
browser’s IP address to change during a session. If this can occur, the protocol must allow for
users to re-login and have the current block (or range) recorded as valid.

Applications saving state of user

Need to determine how to push POST style CGI variables back via a redirect. Some applications
may only support POST operations so URL-encoding the redirect may not work for some legacy
applications.

10 References
[RFC2109] HTTP State Management Mechanism (RFC 2109), available

http://www.faqs.org/rfcs/rfc2109.html

[RFC2119] Key words for use in RFCs to Indicate Requirement Levels (RFC 2119),
available http://www.faqs.org/rfcs/rfc2119.html

[RFC2616] Hypertext Transfer Protocol -- HTTP/1.1 (RFC 2616), available
http://www.faqs.org/rfcs/rfc2616.html

[SSL] The SSL Protocol, Version 3.0, available
http://home.netscape.com/eng/ssl3/ssl-toc.html

[CRYPTO] Department of Commerce Intranet Cryptography Support API & Tutorial

[FIPS186-2] FIPS Pub 186-2: Digital Signature Standard, available
http://csrc.nist.gov/fips/fips186-2.pdf

DOC Intranet Architecture 35

Appendix B: WAP Client API for the DOC Intranet

Version 1.0

Revised: 2000.11.12

1 Introduction

Applications utilizing the WAP protocol for authentication within the DOC intranet require a
standard toolset to facilitate executing the client protocol. The purpose of the document is to
provide API's enabling client applications to easily authenticate users through use of the WAP
protocol. This document describes the API for Java, Perl, and PHP.

2 Terminology
API

Application Programming Interface. A set of routines provided for a developer to access
programmatic functionality that has already been developed.

DOC

Department of Commerce.

IID

Intranet ID. The identifier for any entry in the DOC intranet directory service. The

IID is unique in the entire directory service. For instance, an application cannot have the
same IID as a person. It is a string composed of numbers and upper and lower case
letters, and is case-sensitive.

3 Overview
The Directory API provides applications an easy means of accessing DOC directory service and
Group Service information. Rather than making calls to the LDAP server and group server
directly, the application uses API calls that deal with networking, protocol, and data handling
issues. The programmer need only concentrate on the application they are trying to build.

A diagram showing the Directory API’s place in the directory portion of the DOC intranet
infrastructure is included in Figure 1 in Appendix D: Directory Schema for the DOC Intranet
Directory Service.

DOC Intranet Architecture 36

4 The Directory API for Java

This class manages WAP authentication. Applications usually handle requests as follows:

AuthenticationManager auth = new AuthenticationManager(...);

try {

auth.authenticate();

if (auth.getPayload() != null)

// restore state from payload using getPayload

if (auth.isAnonymous()) {

// Provide anonymous service

} else if (auth.isAlternateUsernameProvided()) {

// Provide service using getAuthAlternateUsername

// as user identifier

} else {

// Provide service using getAuthUserIID as user identifier

}

} catch (ProtocolViolationException pve) {

auth.sendErrorPage(...);

return;

} catch (RedirectRequiredException rre) {

auth.setPayload (...);

auth.sendRedirect();

return;

}

DOC Intranet Architecture 37

4.1 The AuthenticationManager Class

Signature

public class AuthenticationManager extends Object

Variables

public static final int REDIR_NONE WAP does not require redirection.

public static final int REDIR_AUTH WAP requires redirection to Authenticator

public static final int REDIR_SELF WAP requires redirection to self in order to set
cookies on client.

public static final int PAGE_BAD_SIG WAP BAD_SIG page handle.

public static final int PAGE_BAD_APP_IID WAP BAD_APP_IID page handle.

public static final int PAGE_BAD_IP WAP BAD_IP page handle.

Constructors

AuthenticationManager

 public AuthenticationManager(String myApplicationIID,

URL myReturnURL,

docDirectory dirSvc,

HttpServletRequest req,

HttpServletResponse res,

TicketService tktSvc)

Defines an authenticator with an initial Request/Response pair.

Parameters:

myApplicationIID - The Intranet ID of the calling application.

myReturnURL - The URL to which clients should return if they are redirected elsewhere.

dirSvc - The DOC Directory Server reference as a docDirectory object.

DOC Intranet Architecture 38

req - The incoming servlet request.

res - The outgoing servlet response.

tktSvc - The TicketService object describing the WAP ticket service to use.

Methods

setAuditLog

 public void setAuditLog(OutputStream logStream)

Define the stream to which logging should be directed. The logging is for protocol and
security violations.

Parameters:

logStream - the output stream to direct audit logging to.

setPayload

 public void setPayload(String payload)

Define a WAP payload. The WAP payload can be used to store state when redirecting a
request to the authenticator. The authenticator is required to maintain the payload, and to
return it when redirecting the user back to the calling application. It is returned as a CGI
GET parameter named payload.

Parameters:

payload - The string representation of a payload.

getPayload

 public String getPayload()

If a payload is present in the incoming request, this returns the String representation of
the payload, else null. # @return String representation of a payload, null if request has no
payload

sendRedirect

 public void sendRedirect()

Modifies the response object to set a return code of 301 and add a location header for the
purpose of redirection, and commits the response object to the servlet output stream. This
is used to redirect a user who either lacks authentication information or who has

DOC Intranet Architecture 39

authentication information requiring renewal to the Ticket Service URL, or to redirect the
user back to this URL, setting cookies on the user's browser in the process.

authenticate

 public void authenticate() throws ProtocolViolationException,
RedirectRequiredException

Examines the incoming request for authentication ticket, and checks any ticket present
for validity. AuthenticationManager objects go through two phases: first they are created,
then they authenticate the request. Operations that depend on authentication having been
tested, like getAuthUserIID, will implicitly call authenticate if necessary.

Throws: ProtocolViolationException

if the WAP protocol is violated. This happens when client IP address does not match that
on ticket, ticket fails digital signature test, or ticket's Application IID does not match the
calling application's IID. The specific subclass indicates which violation occurred.

Throws: RedirectRequiredException

authentication cannot complete without a redirect as required by WAP. The specific
subclass indicates which redirection case is needed.

isRedirectRequired

 public boolean isRedirectRequired()

Checks if the WAP protocol requires a redirection for this connection. Redirections are
required if connecting clients have no tickets, or if they have a old ticket requiring
renewal, or if the authenticator has set CGI variables indicating the application should set
cookies on behalf of the authenticator. Equivalent to (getRedirectType() !=
REDIR_NONE).

Returns:

whether redirect is required to complete authentication protocol

See Also:

sendRedirect, getRedirectURL, getRedirectType

isRenewRequired

 public boolean isRenewRequired()

Checks if the WAP protocol requires a renewal request to be sent to the authenticator.
Renewals are required if the connecting client has a ticket with an expired renew date.

DOC Intranet Architecture 40

Returns:

whether application ticket is outdated and requires renewal

See Also:

sendRedirect

isValidTicketProvided

 public boolean isValidTicketProvided()

Checks if the connecting client provided a valid, up to date application ticket. This
method checks the following:

• Posession of a ticket

• Valid digital signature by the authenticator

• Renew time has not expired

• Client IP address matches that on ticket

Returns:

whether client submitted a valid application ticket via a cookie

isAnonymous

 public boolean isAnonymous()

Checks if the user is accessing this application anonymously. This happens when a user
declines to provide authentication information, or when the authenticator is configured to
automatically return anonymous access to this application.

Returns:

whether the user is connected anonymously (has application ticket but no UserIID)

isAlternateUsernameProvided

 public boolean isAlternateUsernameProvided()

Checks if the client's ticket contains an alternate username. Alternate usernames are
provided on an application-specific basis by the authenticator to legacy applications that
do not understand Intranet ID's, and require instead a different username be used by the
user.

DOC Intranet Architecture 41

Returns:

whether the authenticator provided an alternate username for this application to use
instead of UserIID

getAuthAlternateUsername

 public String getAuthAlternateUsername()

Returns the Authenticated Alternate Username if so included in the authentication ticket.
Returns null if no alternate username is provided.

Returns:

the alternate username provided by the authenticator, or null if none was provided

See Also:

isAlternateUsernameProvided

getAuthUserIID

 public String getAuthUserIID()

Returns the Intranet ID (IID) of the authenticated user, or null for anonymous or
unauthenticated users.

Returns:

the authenticated user IID of the client

getRedirectURL

 public URL getRedirectURL()

If WAP requires a redirect, this call returns the URL to be redirected to, else null.

Returns:

the URL which sendRedirect will redirect the client to, or null if no redirection is required.

getRedirectType

 public int getRedirectType()

Returns REDIR_AUTH if WAP requires redirect to authenticator, REDIR_SELF if WAP
requires redirect to self, and REDIR_NONE if WAP does not require a redirect.

DOC Intranet Architecture 42

Returns:

one of REDIR_AUTH, REDIR_SELF or REDIR_NONE, reflecting what type of redirect
is required by the WAP protocol.

sendErrorPage

 public void sendErrorPage(int pageID)

Sends a fixed page out in accordance with WAP protocol.

Parameters:

pageID - One of PAGE_BAD_SIG, PAGE_BAD_IP or PAGE_BAD_APP_IID

4.2 The BadAppIIDException Class

Signature

public class BadAppIIDException extends ProtocolViolationException

Constructors

BadAppIIDException

 public BadAppIIDException()

Constructs a BadAppIIDException with no specified detail message.

BadAppIIDException

 public BadAppIIDException(String s)

Constructs an BadAppIIDException with the specified detail message.

Parameters:

s - the detail message

4.3 The BadClientIPAddressException Class

Signature

public class BadClientIPAddressException extends ProtocolViolationException

DOC Intranet Architecture 43

Constructors

BadClientIPAddressException

 public BadClientIPAddressException()

Constructs a BadClientIPAddressException with no specified detail message.

BadClientIPAddressException

 public BadClientIPAddressException(String s)

Constructs an BadClientIPAddressException with the specified detail message.

Parameters:

s - the detail message

4.4 The BadSignatureException Class

Signature

public class BadSignatureException extends ProtocolViolationException

Constructors

BadSignatureException

 public BadSignatureException()

Constructs a BadSignatureException with no specified detail message.

BadSignatureException

 public BadSignatureException(String s)

Constructs an BadSignatureException with the specified detail message.

Parameters:

s - the detail message

4.5 The ProtocolViolationException Class

Signature

public class ProtocolViolationException extends Exception

DOC Intranet Architecture 44

Constructors

ProtocolViolationException

 public ProtocolViolationException()

Constructs a ProtocolViolationException with no specified detail message.

ProtocolViolationException

 public ProtocolViolationException(String s)

Constructs an Exception with the specified detail message.

Parameters:

s - the detail message

4.6 The RedirectNoTicketException Class

Signature

public class RedirectNoTicketException extends RedirectRequiredException

Constructors

RedirectNoTicketException

 public RedirectNoTicketException()

Constructs a RedirectNoTicketException with no specified detail message.

RedirectNoTicketException

 public RedirectNoTicketException(String s)

Constructs an RedirectNoTicketException with the specified detail message.

Parameters:

s - the detail message

DOC Intranet Architecture 45

4.7 The RedirectRenewalException Class

Signature

public class RedirectRenewalException extends RedirectRequiredException

Constructors

RedirectRenewalException

 public RedirectRenewalException()

Constructs a RedirectRenewalException with no specified detail message.

RedirectRenewalException

 public RedirectRenewalException(String s)

Constructs an RedirectRenewalException with the specified detail message.

Parameters:

s - the detail message

4.8 The RedirectRequiredException Class

Signature

public class RedirectRequiredException extends Exception

Constructors

RedirectRequiredException

 public RedirectRequiredException()

Constructs a RedirectRequiredException with no specified detail message.

RedirectRequiredException

 public RedirectRequiredException(String s)

Constructs an RedirectRequiredException with the specified detail message.

Parameters:

s - the detail message

DOC Intranet Architecture 46

4.9 The RedirectToSelfException Class

Signature

public class RedirectToSelfException extends RedirectRequiredException

Constructors

RedirectToSelfException

 public RedirectToSelfException()

Constructs a RedirectToSelfException with no specified detail message.

RedirectToSelfException

 public RedirectToSelfException(String s)

Constructs an RedirectToSelfException with with the specified detail message.

Parameters:

s - the detail message

4.10 The TicketService Class

Signature

public class TicketService extends Object

Constructors

TicketService

 public TicketService(URL ticketServiceURL,

 byte ticketServicePublicKey[])

Creates a ticket service object to hold information defining a WAP authenticator ticket
service

Parameters:

ticketServiceURL - the well-known URL of the ticket service

DOC Intranet Architecture 47

ticketServicePublicKey - the public key used to authenticate the authenticator

TicketService

 public TicketService()

Creates an uninitialized ticket service object

Methods

setURL

 public void setURL(URL URL)

Sets or replaces the URL representing the well-known URL of the ticket service.

Parameters:

URL - the well-known ticket service URL

setPublicKey

 public void setPublicKey(byte publicKey[])

Sets or replaces the public key used to authenticate with this ticket service.

Parameters:

publicKey - the well-known ticket service public key

getURL

 public URL getURL()

Return the well-known URL of the ticket service or null if not set.

getPublicKey

 public byte[] getPublicKey()

Return the well-known ticket service public-key, or null if not set.

DOC Intranet Architecture 48

5 The WAP Client API for Perl
The Perl client API’s reside in a module named DOCIntranet.pm. They require CPAN modules
Exception and URI:URL. The main class is the AuthenticationManager class, which requires a
TicketService class and a DocDirectory class in its constructor. Various exceptions round out
the provided set of classes.

Applications usually handle requests as follows:

use Exception;

use URI::URL;

use DOCIntranet;

$auth = new AuthenticationManager(...);

try {

$auth->authenticate();

if ($auth->getPayload() != null)

// restore state from payload using getPayload

if ($auth->isAnonymous()) {

// Provide anonymous service

} else if ($auth->isAlternateUsernameProvided()) {

// Provide service using getAuthAlternateUsername

// as user identifier

} else {

// Provide service using getAuthUserIID as user identifier

}

}

catch DOCIntranet::ProtocolViolationException pve =>

DOC Intranet Architecture 49

sub{

$auth.sendErrorPage(...);

return;

},

catch DOCIntranet::RedirectRequiredException rre =>

sub{

$auth.setPayload (...);

$auth.sendRedirect();

return;

}

}

5.1 The AuthenticationManager Class

Signature

package AuthenticationManager;

@ISA = (‘UNIVERSAL’);

Variables

REDIR_NONE WAP does not require redirection.

REDIR_AUTH WAP requires redirection to Authenticator

REDIR_SELF WAP requires redirection to self in order
to set cookies on client.

PAGE_BAD_SIG WAP BAD_SIG page handle.

PAGE_BAD_APP_IID WAP BAD_APP_IID page handle.

PAGE_BAD_IP WAP BAD_IP page handle.

Constructors

DOC Intranet Architecture 50

$auth=new AuthenticationManager (

myApplicationIID,

myReturnURL,

dirSvc,

tktSvc)

Parameters:

myApplicationIID - The Intranet ID of the calling application.

myReturnURL - The URI::URL to which clients should return if they

are redirected elsewhere.

dirSvc - The DOC Directory Server reference as a docDirectory object.

tktSvc - The TicketService object describing the WAP ticket service to use.

Methods

setAuditLog

$auth->setAuditLog(logFile)

Define the stream to which logging should be directed. The logging is for protocol and
security violations.

Parameters:

logFile - the output file to direct audit logging to.

setPayload

$auth->setPayload(payload)

Define a WAP payload. The WAP payload can be used to store state when redirecting a
request to the authenticator. The authenticator is required to maintain the payload, and to
return it when redirecting the user back to the calling application. It is returned as a CGI
GET parameter named payload.

Parameters:

payload - The string representation of a payload.

DOC Intranet Architecture 51

getPayload

$auth->getPayload()

If a payload is present in the incoming request, this returns the String representation of
the payload, else null.

Returns:

String representation of a payload, null if request has no

payload

sendRedirect

$auth->sendRedirect()

Outputs a redirection HTTP response as required by the WAP protocol. This is used to
redirect a user who either lacks authentication information or who has authentication
information requiring renewal to the Ticket Service URL, or to redirect the user back to
this URL, setting cookies on the user's browser in the process.

authenticate

$auth->authenticate()

Examines the incoming request for authentication ticket, and checks any ticket present
for validity. AuthenticationManager objects go through two phases: first they are created,
then they authenticate the request. Operations that depend on authentication having been
tested, like getAuthUserIID, will implicitly call authenticate if necessary.

Throws: ProtocolViolationException

if the WAP protocol is violated. This happens when client IP address does not match that
on ticket, ticket fails digital signature test, or ticket's Application IID does not match the
calling application's IID. The specific subclass indicates which violation occurred.

Throws: RedirectRequiredException

authentication cannot complete without a redirect as required by WAP. The specific
subclass indicates which redirection case is needed.

isRedirectRequired

$auth->isRedirectRequired()

Checks if the WAP protocol requires a redirection for this connection. Redirections are
required if connecting clients have no tickets, or if they have a old ticket requiring
renewal, or if the authenticator has set CGI variables indicating the application should set

DOC Intranet Architecture 52

cookies on behalf of the authenticator. Equivalent to (getRedirectType() !=
REDIR_NONE).

Returns:

boolean indicating whether redirect is required to complete authentication protocol

See Also:

sendRedirect, getRedirectURL, getRedirectType

isRenewRequired

$auth->isRenewRequired()

Checks if the WAP protocol requires a renewal request to be sent to the authenticator.
Renewals are required if the connecting client has a ticket with an expired renew date.

Returns:

boolean indicating whether application ticket is outdated and requires renewal

See Also:

sendRedirect

isValidTicketProvided

$auth->isValidTicketProvided()

Checks if the connecting client provided a valid, up to date application ticket. This
method checks the following:

• Posession of a ticket

• Valid digital signature by the authenticator

• Renew time has not expired

• Client IP address matches that on ticket

Returns:

boolean indicating whether client submitted a valid application ticket via a cookie

isAnonymous

$auth->isAnonymous()

DOC Intranet Architecture 53

Checks if the user is accessing this application anonymously. This happens when a user
declines to provide authentication information, or when the authenticator is configured to
automatically return anonymous access to this application.

Returns:

boolean indicating whether the user is connected anonymously (has application ticket but
no UserIID)

isAlternateUsernameProvided

$auth->isAlternateUsernameProvided()

Checks if the client's ticket contains an alternate username. Alternate usernames are
provided on an application-specific basis by the authenticator to legacy applications
which do not understand Intranet ID's, and require instead a different username be used
by the user.

Returns:

boolean indicating whether the authenticator provided an alternate username for this
application to use instead of UserIID

getAuthAlternateUsername

$auth->getAuthAlternateUsername()

Returns the Authenticated Alternate Username if so included in the authentication ticket.
Returns null if no alternate username is provided.

Returns:

the alternate username string provided by the authenticator, or undef if none was
provided

See Also:

isAlternateUsernameProvided

getAuthUserIID

$auth->getAuthUserIID()

Returns the Intranet ID (IID) of the authenticated user, or undef for anonymous or
unauthenticated users.

Returns:

the authenticated user IID string of the client

DOC Intranet Architecture 54

getRedirectURL

$auth->getRedirectURL()

If WAP requires a redirect, this call returns the URI::URL to be redirected to, else it
return undef.

Returns:

the URI::URL which sendRedirect will redirect the client to, or undef if no redirection is
required.

getRedirectType

$auth->getRedirectType()

Returns REDIR_AUTH if WAP requires redirect to authenticator, REDIR_SELF if WAP
requires redirect to self, and REDIR_NONE if WAP does not require a redirect.

Returns:

one of the defined integers REDIR_AUTH, REDIR_SELF or REDIR_NONE, reflecting
what type of redirect is required by the WAP protocol.

sendErrorPage

$auth->sendErrorPage(pageID)

Sends a fixed page out in accordance with WAP protocol.

Parameters:

pageID - One of the defined integers PAGE_BAD_SIG, PAGE_BAD_IP or
PAGE_BAD_APP_IID

5.2 The BadAppIIDException Class

Signature

package BadAppIIDException;

@ISA = (‘ProtocolViolationException’);

Constructors

DOC Intranet Architecture 55

BadAppIIDException

$exc = new BadAppIIDException()

Constructs a BadAppIIDException.

5.3 The BadClientIPAddressException Class

Signature

package BadClientIPAddressException;

@ISA = (‘ProtocolViolationException’);

Constructors

BadClientIPAddressException

$exc = new BadClientIPAddressException ()

Constructs a BadClientIPAddressException.

5.4 The BadSignatureException Class

Signature

package BadSignatureException;

@ISA = (‘ProtocolViolationException’);

Constructors

BadSignatureException

$exc = new BadSignatureException ()

Constructs a BadSignatureException.

5.5 The ProtocolViolationException Class

Signature

package ProtocolViolationException;

DOC Intranet Architecture 56

@ISA = (‘Exception’);

Constructors

ProtocolViolationException

$exc = new ProtocolViolationException ()

Constructs a ProtocolViolationException.

5.6 The RedirectNoTicketException Class

Signature

package RedirectNoTicketException;

@ISA = (‘RedirectRequiredException);

Constructors

RedirectNoTicketException

$exc = new RedirectNoTicketException ()

Constructs a RedirectNoTicketException.

5.7 The RedirectRenewalException Class

Signature

package RedirectRenewalException;

@ISA = (‘RedirectRequiredException);

Constructors

RedirectRenewalException

$exc = new RedirectRenewalException ()

Constructs a RedirectRenewalException.

DOC Intranet Architecture 57

5.8 The RedirectRequiredException Class

Signature

package RedirectRequiredException;

@ISA = (‘Exception);

Constructors

RedirectRequiredException

$exc = new RedirectRequiredException ()

Constructs a RedirectRequiredException.

5.9 The RedirectToSelfException Class

Signature

package RedirectToSelfException;

@ISA = (‘RenewalRequiredException);

Constructors

RedirectToSelfException

$exc = new RedirectToSelfException ()

Constructs a RedirectToSelfException.

5.10 The TicketService Class

Signature

package TicketService;

@ISA = (‘UNIVERSAL’);

Constructors

TicketService

$auth=new TicketService(

DOC Intranet Architecture 58

ticketServiceURL,

ticketServicePublicKey)

Creates a ticket service object to hold information defining a WAP authenticator ticket
service

Parameters:

ticketServiceURL - the well-known URI::URL of the ticket service

ticketServicePublicKey - the public key used to authenticate the authenticator

TicketService

$auth = new TicketService()

Creates an uninitialized ticket service object

Methods

setURL

$auth->setURL(URL)

Sets or replaces the URI::URL representing the well-known URL of the ticket service.

Parameters:

URL - the well-known ticket service URI::URL

setPublicKey

$auth->setPublicKey(publicKey)

Sets or replaces the public key used to authenticate with this ticket service.

Parameters:

publicKey - the well-known ticket service public key string

getURL

$auth->getURL()

Return the well-known URI::URL of the ticket service or undef if not set.

getPublicKey

DOC Intranet Architecture 59

$auth->getPublicKey()

Return the well-known ticket service public-key, or undef if not set.

DOC Intranet Architecture 60

6 The WAP Client API for PHP
The PHP client API’s reside in a library file named DOCIntranet.inc. The main class is the
AuthenticationManager class, which requires a TicketService class and a DocDirectory class in
its constructor.

Applications usually handle requests as follows:

include "DOCIntranet.inc";

$auth = new AuthenticationManager(...);

$rv = $auth->authenticate();

isSet($rv) or switch ($doc_errno) {

case 0: // not really an error

break;

case BAD_APP_IID:

case BAD_CLIENT_IP:

case BAD_SIG:

$auth.sendErrorPage($rv); // does not return

break;

case REDIRECT_AUTH:

case REDIRECT_SELF

$auth.setPayload(...);

$auth.sendRedirect(); // does not return

break;

}

if ($auth->getPayload())

DOC Intranet Architecture 61

// restore state from payload using getPayload

if ($auth->isAnonymous()) {

// Provide anonymous service

} else if ($auth->isAlternateUsernameProvided()) {

// Provide service using getAuthAlternateUsername

// as user identifier

} else {

// Provide service using getAuthUserIID as user identifier

}

6.1 The AuthenticationManager Class

Signature

class AuthenticationManager;

Variables

int doc_errno error number of last API call, or 0 on success

Defined Constants

int REDIR_NONE WAP does not require redirection.

int REDIR_AUTH WAP requires redirection to Authenticator

int REDIR_SELF WAP requires redirection to self in order to set
cookies on client.

int BAD_SIG WAP BAD_SIG page handle.

int BAD_APP_IID WAP BAD_APP_IID page handle.

int BAD_CLIENT_IP WAP BAD_IP page handle.

Constructors

DOC Intranet Architecture 62

$auth=new AuthenticationManager (

string myApplicationIID,

string myReturnURL,

DocDirectory dirSvc,

TicketService tktSvc)

Parameters:

myApplicationIID - The Intranet ID of the calling application.

myReturnURL - The URI::URL to which clients should return if they

are redirected elsewhere.

dirSvc - The DOC Directory Server reference as a docDirectory object.

tktSvc - The TicketService object describing the WAP ticket service to use.

Methods

setAuditLog

void $auth->setAuditLog(string logFile)

Define the file to which logging should be directed. The logging is for protocol and
security violations.

Parameters:

logFile - the output file to direct audit logging to.

setPayload

void $auth->setPayload(string payload)

Define a WAP payload. The WAP payload can be used to store state when redirecting a
request to the authenticator. The authenticator is required to maintain the payload, and to
return it when redirecting the user back to the calling application. It is returned as a CGI
GET parameter named payload.

Parameters:

payload - The string representation of a payload.

DOC Intranet Architecture 63

getPayload

string $auth->getPayload(void)

If a payload is present in the incoming request, this returns the String representation of
the payload, else returns an unbound value and sets $doc_errno.

Returns:

String representation of a payload, an unbound value if request has no

payload. On errors, also sets $doc_errno.

sendRedirect

void $auth->sendRedirect(void)

Outputs a redirection HTTP response as required by the WAP protocol. This is used to
redirect a user who either lacks authentication information or who has authentication
information requiring renewal to the Ticket Service URL, or to redirect the user back to
this URL, setting cookies on the user's browser in the process.

Return:

This function does not return control to the calling process.

authenticate

int $auth->authenticate(void)

Examines the incoming request for authentication ticket, and checks any ticket present
for validity. AuthenticationManager objects go through two phases: first they are created,
then they authenticate the request. Operations that depend on authentication having been
tested, like getAuthUserIID, will implicitly call authenticate if necessary.

Returns:

On error, returns an unbound value, and sets $doc_errno to one of the following values.

BAD_CLIENT_IP when the client IP address does not match

the IP addrres in the presented ticket

BAD_APP_IID when the application IID does not match the

application IID in the ticket

DOC Intranet Architecture 64

BAD_SIG when the ticket fails the digital signature

comparison test

REDIRECT_AUTH when a redirct to the authenticator is required

REDIRECT_SELF when a redirect back to the client is required

in order to set cookies

isRedirectRequired

bool $auth->isRedirectRequired(void)

Checks if the WAP protocol requires a redirection for this connection. Redirections are
required if connecting clients have no tickets, or if they have a old ticket requiring
renewal, or if the authenticator has set CGI variables indicating the application should set
cookies on behalf of the authenticator. Equivalent to (getRedirectType() !=
REDIR_NONE).

Returns:

boolean indicating whether redirect is required to complete authentication protocol , or an
unbound value if authenticate was called and generated an error.

See Also:

sendRedirect, getRedirectURL, getRedirectType, authenticate

isRenewRequired

bool $auth->isRenewRequired(void)

Checks if the WAP protocol requires a renewal request to be sent to the authenticator.
Renewals are required if the connecting client has a ticket with an expired renew date.

Returns:

boolean indicating whether application ticket is outdated and requires renewal , or an
unbound value if authenticate was called and generated an error.

See Also:

sendRedirect , authenticate

DOC Intranet Architecture 65

isValidTicketProvided

bool $auth->isValidTicketProvided(void)

Checks if the connecting client provided a valid, up to date application ticket. This
method checks the following:

• Posession of a ticket

• Valid digital signature by the authenticator

• Renew time has not expired

• Client IP address matches that on ticket

Returns:

boolean indicating whether client submitted a valid application ticket via a cookie, or an
unbound value if authenticate was called and generated an error.

isAnonymous

bool $auth->isAnonymous(void)

Checks if the user is accessing this application anonymously. This happens when a user
declines to provide authentication information, or when the authenticator is configured to
automatically return anonymous access to this application.

Returns:

boolean indicating whether the user is connected anonymously (has application ticket but
no UserIID) , or an unbound value if authenticate was called and generated an error.

isAlternateUsernameProvided

bool $auth->isAlternateUsernameProvided(void)

Checks if the client's ticket contains an alternate username. Alternate usernames are
provided on an application-specific basis by the authenticator to legacy applications
which do not understand Intranet ID's, and require instead a different username be used
by the user.

Returns:

boolean indicating whether the authenticator provided an alternate username for this
application to use instead of UserIID , or an unbound value if authenticate was
called and generated an error.

DOC Intranet Architecture 66

getAuthAlternateUsername

string $auth->getAuthAlternateUsername(void)

Returns the Authenticated Alternate Username if so included in the authentication ticket,
or an empty string if none was included.

Returns:

the alternate username string provided by the authenticator, or an unbound value if
authenticate was called and generated an error. If no alternate username was
included in the ticket, returns an empty string.

See Also:

isAlternateUsernameProvided, authenticate

getAuthUserIID

string $auth->getAuthUserIID(void)

Returns the Intranet ID (IID) of the authenticated user, or an unbound value if
authenticate was called and generated an error.

 Returns:

the authenticated user IID string of the client or an unbound value if authenticate
was called and generated an error. Returns an empty string if the user is anonymous.

getRedirectURL

string $auth->getRedirectURL(void)

If WAP requires a redirect, this call returns the URL to be redirected to or an unbound
value if authenticate was called and generated an error.

Returns:

the URL which sendRedirect will redirect the client to, or an unbound value if
authenticate was called and generated an error.

getRedirectType

int $auth->getRedirectType(void)

Returns REDIR_AUTH if WAP requires redirect to authenticator, REDIR_SELF if WAP
requires redirect to self, and REDIR_NONE if WAP does not require a redirect.

Returns:

DOC Intranet Architecture 67

one of the defined integers REDIR_AUTH, REDIR_SELF or REDIR_NONE, reflecting
what type of redirect is required by the WAP protocol. Returns an unbound value if
authenticate was called and generated an error.

sendErrorPage

void $auth->sendErrorPage(int pageID)

Sends a fixed page out in accordance with WAP protocol.

Return:

This function does not return control to the calling process.

Parameters:

pageID - One of the defined integers BAD_SIG, BAD_CLIENT_IP or BAD_APP_IID

6.2 The TicketService Class

Signature

class TicketService;

Constructors

TicketService

$tktSvc=new TicketService(

string ticketServiceURL,

string ticketServicePublicKey)

Creates a ticket service object to hold information defining a WAP authenticator ticket
service

Parameters:

ticketServiceURL - the well-known URL of the ticket service

ticketServicePublicKey - the public key used to authenticate the authenticator

TicketService

$tktSvc = new TicketService(void)

Creates an uninitialized ticket service object

DOC Intranet Architecture 68

Methods

setURL

void $tktSvc->setURL(string URL)

Sets or replaces the URL representing the well-known URL of the ticket service.

Parameters:

URL - the well-known ticket service URL

setPublicKey

void $tktSvc->setPublicKey(string publicKey)

Sets or replaces the public key used to authenticate with this ticket service.

Parameters:

publicKey - the well-known ticket service public key string

getURL

string $tktSvc->getURL(void)

Return the well-known URL of the ticket service or an unbound value if not set.

getPublicKey

string $tktSvc->getPublicKey(void)

Return the well-known ticket service public-key, or an unbound value if not set.

DOC Intranet Architecture 69

Appendix C: DOC Intranet Cryptography Overview

Version: 1.0
Revised: 2000.11.12

1 Introduction

This document describes cryptographic methods used in the Department of Commerce intranet
architecture. Cryptography is used to authenticate agents and to digitally sign documents. All
cryptography used is asymetric, utilizing a public key and private key pair. Key management is
beyond the scope of this document, but is assumed to occur in a directory service, in a PKI
infrastructure, or by manual exchange.

Two components in the intranet architecture utilize cryptography: the Inter-Application
Communication Protocol (IACP) and the Web-user Authentication Protocol (WAP).
Additionally, various intranet HTTP connections utilize SSL-based encryption. SSL is not
covered in this document.

The IACP uses digital signatures of nonce strings to authenticate parties participating in the
protocol. These digital signatures are conveyed by way of HTTP headers. As such, they must be
properly encoded to comply with HTTP header data transmission formats

WAP utilizes digital signatures of application tickets and session ticket. Both tickets are
transmitted in plaintext as HTTP headers. The digital signatures are transmitted as HTTP
headers, and must be properly encoded in a compliant HTTP header data transmission format.

This document covers two aspects: digital signatures used in WAP and IACP, and the encoding
technique used to transmit encrypted data via HTTP headers.

2 Digital Signatures
A digital signature is a binary string of data created using the signer's private key. As such, it
cannot be forged by anyone who does not possess the signer's private key.

For the purposes of the intranet architecture, all digital signatures are constructed using
techniques outlined in [FIPS186-2], Digital Signature Standard. The Digital Signature Standard
mandates SHA-1 for the message digest portion of the digital signature, but allows a choice of
algorithms for the digital signing step. All digital signatures covered by this document must use
the RSA digital signing algorithm.

3 Encoding for HTTP Transmission
Digital signatures as generated by the techniques outlined in section 2 are binary data, and as
such are not suitable for direct inclusion in a HTTP header. The BASE64 encoding scheme (see
[RFC1521], Section 5.2) provides a method of encoding binary data into a string consisting
exclusively of the characters A-Z, a-z, 0-9, +, / and =.

DOC Intranet Architecture 70

There are two variants of this algorithm in common use. The first, which strictly abides by
[RFC1521], limits the length of an encoded string to a maximum of 76 characters. This is
suitable for email headers, but not appropriate for many other general-purpose encodings. The
second variant removes this limitation, and encodes arbitrarily long strings. For use in HTTP
headers within the Department of Commerce's intranet, the second technique will be utilized.

Further, all encoded header values are to be enclosed in double quotes.

As an example, consider the case where the following digital signature has been created.

Digital Signature: akZ&"9zl^@~'"!73

Applying the BASE64 encoding scheme yields the following.

Base64 Encoding: YWtaJiI5emxeQH4nIiE3Mw==

Finally, to transmit this signature in a header named APP_TICKET, the following header line is
included.

APP_TICKET="YWtaJiI5emxeQH4nIiE3Mw=="

4 References
[FIPS186-2] FIPS Pub 186-2: Digital Signature Standard, available

http://csrc.nist.gov/fips/fips186-2.pdf

[RFC1521] MIME (Multipurpose Internet Mail Extensions) Part One:
Mechanisms for Specifying and Describing the Format of Internet
Message Bodies, available http://www.faqs.org/rfcs/rfc1521.html

DOC Intranet Architecture 71

Appendix D: Directory Schema for the DOC Intranet
Directory Service

Version 1.0

Revised: 2000.11.12

1 Introduction
The directory service stores information about users and online applications in the DOC intranet,
as well as the complete organizational structure and other groups within DOC. This document
describes the schema used within the directory service.

2 Terminology
attribute

A single unit of information in an LDAP entry with an associated syntax. Analogous to a
field in a database record.

API

Application Programming Interface. A set of routines provided for a developer to access
programmatic functionality that has already been developed.

ces

Case Exact String. The syntax method for LDAP attributes that indicates that values for
this attribute are case sensitive.

cis

Case Ignore String. The syntax method for LDAP attributes that indicates that values for
this attribute are not case sensitive.

cn

commonName. A common LDAP attribute. The textual or spoken proper name of an
entry.

dn

Distinguished Name. The fully qualified name of an LDAP entry. It is unique within the
directory, and comprised of the RDNs of the entry from root.

DOC Intranet Architecture 72

DOC

Department of Commerce.

IANA

Internet Assigned Numbers Authority. The central coordinator for the assignment of
unique parameter values for Internet protocols.

IACP

Inter-Application Protocol. The Protocol used within the DOC intranet to allow online
applications to share information.

IETF

Internet Engineering Task Force. The international community of network designers,
operators, vendors, and researchers concerned with the evolution of Internet architecture.
Working groups within the IETF administer Requests For Comment (RFCs) that define
much of what has become standard in Internet architecture.

IID

Intranet ID. The identifier for any entry in the DOC intranet directory service. The

IID is unique in the entire directory service. For instance, an application cannot have the
same IID as a person. It is a string composed of numbers and upper and lower case
letters, and is case-sensitive.

LDAP

Lightweight Directory Access Protocol. Version 3 is defined in RFC2251. While the
protocol itself does not describe implementation details for a directory service, in
common usage the term is used to describe a directory server that supports the LDAP
protocol.

objectclass

An entry in an LDAP directory. It is comprised of a collection of required and optional
attributes. Although it is analogous to a record in a database, attributes can be
multivalued- i.e. a single entry may contain more than one value for a given attribute.

OID

Object Identifier. Unique identifier used to identify LDAP objectclasses, attributes, and
syntax descriptions recognized by the Internet Engineering Task Force (IETF). Assigned
by Internet Assigned Numbers Authority (IANA).

DOC Intranet Architecture 73

ou

Organizational Unit. A common LDAP attribute that has two conventional uses: to
contain pieces of a formal organization, such as Departments or Offices; or to
differentiate between categories within the directory itself, such as People and Printers.
For the schema described here, it is always used in the latter sense.

RDN

Relative Distinguished Name. The identifier which is unique to a given entry at its level
in the hierarchy. It is always the leftmost portion of an entry’s dn.

uid

The LDAP abbreviation for userid. This is an optional attribute for docAppUser entries
which will be used when the docApp is a legacy application.

3 Overview

3.1 Directory Service Access

The directory service can be accessed for user and application information directly by a DOC
online application, but will typically be accessed via the Directory API. Group information,
while stored in the directory service, is accessed only by the Group Service. The Group Service
is accessed via Inter-Application Communication Protocol (IACP).

Figure 1: Directory Subsystem Diagram, summarizes access to the Directory Service.

Access controls are described for each objectclass. The privileges described in this document
pertain to the normal users of the system. Other privileges may be granted to a DOC intranet
“superusers” group, a directory service maintenance group, and other resource management
groups as DOC policy dictates, but are not included here.

For a general discussion of how LDAP access control is specified, see the OpenLDAP 2.0
Administrator’s Guide:

http://www.openldap.org/doc/admin/slapdconfig.html#Access Control

3.2 Directory Service Organization

There are three organizational units (ou’s) from root: apps, people, and groups. Every
application, person, and group has a unique identifier attribute, docIid, where IID denotes
intranet ID.

Each application has a docApp entry that specifies public information about each online
application.

DOC Intranet Architecture 74

Each person has one docPerson entry, and zero or more docAppUser entries. The docPerson
entry contains conventional directory information for the person, such as addresses and
telephone numbers. Each docAppUser entry contains application-specific information
pertaining to the person.

The groups ou contains contains a further organizational level. This level will specify the type
of group. Initial entries at this level will include DOC Org, External Org, Admins, and User
Defined. Under this level live docGroup entries.

Figure 2: Directory Schema Diagram, summarizes the schema organization.

3.3 Common Attributes

The attributes shown below are used by most objectclasses defined in this document.

Attribute Name Syntax OID

ObjectClass cis, 1-many 2.5.4.0

Specifies the object classes of the object. Must include the object.

DocIid ces, 1 (local)

Specifies the Intranet ID (IID) of the entry. This identifier is specific to the DOC
intranet. Legal characters are numerals and upper and lower case characters.

The IID is used by the intranet infrastructure and associated programs: it is never
entered or seen by a user of the system. Note that the syntax is case exact string, so an
IID of 1wR4 is different from 1WR4.

Cn cis, 1-many 2.5.4.3

commonName. Identifies the name of an object in the directory. When the object
corresponds to a person, the cn it is will be the person's full name.

4 Application Entries

4.1 docApp Entries

4.1.1 The docApp Objectclass

Under the apps ou reside docApp entries. docApp entries contain public information about each
online application. The RDN for each docApp entry is docIid.

 Note that a particular application may have several instances running within the DOC intranet.
For example, several offices may each use their own installation of a given application. In this

DOC Intranet Architecture 75

case, each instance of the application will have a separate docApp entry. As far as the directory
is concerned, they are unrelated applications. The docCnAbbrev attribute must be unique
among docApps.

objectClass docApp

 requires

 objectClass,

 docIid,

 cn,

 docCnAbbrev,

 docEntryUrl,

 docIacpUrl,

 docRequireSsl

 allows

 description,

 docReturnUrlDomain,

 docReturnUrlPath,

 docAdmin,

 docGroupAuthorized

4.1.2 docApp Attributes

Attribute Name Syntax OID

DocCnAbbrev cis, 1 (local)

An abbreviated version of the commonName (cn) attribute. This must be unique among
docApps. It should be easily to remember and refer to by humans, as it will be a useful
way to refer to an instance of a particular application by developers and frequent users
of an application.

DocEntryUrl ces, 1 (local)

The URL by which a user enters the application.

DocIacpUrl ces, 1 (local)

DOC Intranet Architecture 76

The URL used for Inter-Application Protocol requests.

DocRequireSsl boolean, 1 (local)

Whether or not authenticated users with an application ticket must access the application
via an SSL connection.

Description cis 2.5.4.13

Description of the application.

DocReturnUrlDomain cis, 1 (local)

The domain field of a cookie used by the application.

DocReturnUrlPath ces, 1 (local)

The path field of a cookie used by the application.

DocAdmin ces (local)

The IID of the docGroup or docPerson that manages the application. If it is a group, it
will normally be in the Admins group ou (see section 6.1).

DocGroupAuthorized ces (local)

The IID of a group authorized to use the application.

4.1.3 docApp Access Control

A group of docApp entries are granted read and lesser privileges (auth, compare, and search) to
the following attributes: docIid, cn, docEntryUrl, docIacpUrl, docRequireSsl, docCnAbbrev,
description, docReturnUrlDomain, and docReturnUrlPath. This group will include the
Portal Server. As new applications are developed that require read access to docPerson entries,
they must be added to that group.

The WAP server and Group Server are granted read and lesser privileges to all of the above
attributes, as well as docGroupAuthorized.

The Directory Management docApp has full privileges. Users of the DOC intranet manipulate
directory entries solely through this application. While it has full privileges to directory
contents, it will govern an individual’s ability to view, add, or modify directory contents based
on its own internal configuration.

4.1.4 Example docApp Entry

DOC Intranet Architecture 77

dn: docIid=r4gF6, ou=apps, o=doc.gov

objectClass: top

objectClass: docApp

docIid: r4gF6

cn: DOC Sample Online App for OHRM

docCnAbbrev: SampleApp-OHRM

description: The DOC sample application used by OHRM

docEntryUrl: http://host2.doc.gov/sampleApp/ohrm/

docIacpUrl: http://host2.doc.gov/sampleApp/ohrm/iacp

docRequireSsl: TRUE

docReturnUrlDomain: host2.doc.gov

docReturnUrlPath: /sampleApp/ohrm

docAdmin: r4h02

docGroupAuthorized: r4h01

docGroupAuthorized: r4h35

5 People Entries

5.1 docPerson Entries

5.1.1 The docPerson Objectclass

The highest objectClass under people is docPerson. The RDN for a docPerson is docIid.

For a person with multiple addresses, a postalAddress attribute will contain each non-primary
address, while the primary address is divided into the other address part attributes to facilitate
location-based searching.

objectClass docPerson

 requires

 objectClass,

 docIid,

 cn

DOC Intranet Architecture 78

 allows

 sn,

 givenName,

 generationQualifier,

 displayName,

 docShortDisplayName,

 mail,

 telephoneNumber,

 facsimileTelephoneNumber,

 mobile,

 pager,

 docOtherPhoneNumber,

 buildingName,

 roomNumber,

 postalAddress,

 streetAddress,

 physicalDeliveryOfficeName,

 st,

 postalCode

5.1.2 docPerson Attributes

Attribute Name Syntax OID

Sn cis 2.5.4.4

surName. The person's surname, also referred to as last name or family name.

GivenName cis 2.5.4.42

Identifies the entry's given name, usually a person's first name.

DOC Intranet Architecture 79

GenerationQualifier cis 2.5.4.44

Contains the generation Qualifier part of the name, typically appearing in the suffix, for
example:

generationQualifier: III

DisplayName cis 2.16.840.1.113730.3.1.241

Preferred name of a person to be used when displaying entries. Especially useful in
displaying a preferred name for an entry within a one-line summary list. Since other
attribute types, such as cn, are multivalued, they can not be used to display a preferred
name. For example:

displayName: Rob Wilson

docShortDisplayName cis (local)

A short version of the display name. For example:

docShortDisplayName: Rob

Mail cis 0.9.2342.19200300.100.1.3

The person’s primary email address.

TelephoneNumber tel 2.5.4.20

The person’s telephone number.

Fax tel 2.5.4.23

facsimileTelephoneNumber. The fax number at which the person can be reached.

Mobile tel 0.9.2342.19200300.100.1.41

mobileTelephoneNumber. The person's mobile or cellular phone number.

Pager tel 0.9.2342.19200300.100.1.42

pagerTelephoneNumber. The person’s pager telephone number.

docOtherPhoneNumber cis 2.5.4.20

DOC Intranet Architecture 80

Another telephone numbers associated with the person followed by a short description
of the significance of the number. For example:

docOtherPhoneNumber: 202-555-1234 telecommuting

BuildingName cis 0.9.2342.19200300.100.1.48

The building name associated with the person.

RoomNumber cis 0.9.2342.19200300.100.1.6

The room number associated with the person.

PostalAddress cis 2.5.4.16

Identifies the entry's mailing address. This field is intended to include multiple lines.
When represented in LDIF format, each line should be separated by a dollar sign ($).
To represent an actual dollar sign ($) or backslash (\) within this text, use the escaped
hex values \24 and \5c respectively.

Street cis 2.5.4.9

streetAddress. The person’s street number and name, for example:

street: 6789 Slippery Slope Rd NW

physicalDeliveryOfficeName cis 2.5.4.19

Identifies the name of the city or village where a physical delivery office is located. For
example:

physicalDeliveryOfficeName: Blacksburg

St cis 2.5.4.8

stateOrProvinceName. Identifies the state or province in which the entry resides.

PostalCode cis 2.5.4.17

The person’s zip code (US) or postal code.

5.1.3 docPerson Access Control

A group of docApp entries are granted read and lesser privileges to all attributes. This group
will include the Group Server. As new applications are developed that require read access to
docPerson entries, they must be added to that group.

DOC Intranet Architecture 81

The Directory Management docApp has full privileges. Privileges can be extended selectively
to users of the Directory Management application (such as the ability of an employee to change
their preferred name) based on rules internal to it.

5.1.4 Example docPerson Entry

dn: docIid=r4gE2, ou=people, o=doc.gov

objectClass: top

objectClass: docPerson

docIid: r4gE2

cn: Roberto J. Wilson

sn: Wilson

givenName: Roberto

displayName: Rob Wilson

docShortDisplayName: Rob

mail: wilsonrj@doc.gov

telephoneNumber: 202-555-4567

facsimileTelephoneNumber: 202-555-4568

mobile: 202-555-4569

pager: 202-555-4570

docOtherPhoneNumber: 202-555-1234 telecommuting

buildingName: Building XII

roomNumber: 3700

postalAddress: PO Box 27553$Blacksburg, VA 24063

streetAddress: 6789 Slippery Slope Rd NW

physicalDeliveryOfficeName: Blacksburg

st: VA

postalCode: 24060

DOC Intranet Architecture 82

5.2 docAppUser Entries

5.2.1 The docAppUser Objectclass

A docAppUser object specifies attributes for a docPerson associated with a particular docApp.
The docAppUser class or any class extending it would be placed under its corresponding
docPerson entry in the schema hierarchy.

The dn for this object will be composed of the docIid of the application, the docIid of the
person, the people ou, and the doc.gov o. The dn’s of the pertinent docPerson and docApp are
required attributes of the entry.

The docAppUser objectclass itself contains only one optional attribute, uid. This is used when
the user’s application userID (logon id) is different from their intranet userID. If an application
wishes to use the directory service to store other parameters for each user, it is necessary to
extend the docAppUser objectClass.

objectClass docAppUser

 requires

 objectClass,

 docPerson,

 docApp

 allows

 uid

5.2.2 docAppUser Attributes

Attribute Name Syntax OID

DocPerson ces (local)

The person to whom the entry applies. Specified by dn.

DocApp ces (local)

The application to which the entry applies. Specified by dn.

Uid cis 0.9.2342.19200300.100.1.1

userID. The person’s logon id for the given application.

5.2.3 docAppUser Access Control

DOC Intranet Architecture 83

Full privileges are granted to the docApp to which the entry refers for the uid attribute.

The Directory Management docApp has full privileges. Privileges can be extended selectively
to users of the Directory Management application based on rules internal to it.

5.2.4 Example docAppUser Entry

dn: docIid=r4gF6,docIid=r4gE2,ou=people,o=doc.gov

objectClass: top

objectClass: docAppUser

docPerson: docIid=r4gE2, ou=people, o=doc.gov

docApp: docIid=r4gF6, ou=apps, o=doc.gov

uid: wilsonr4

6 Groups Entries

6.1 Types of Groups

There is a single organizational unit (ou) level beneath the group’s ou that specifies the type of
group. Initial entries at this level will include DOC Org, External Org, Admins, and User
Defined. As the DOC intranet is developed and once deployed, entries may be added at this
level to allow new types of groups.

Entries under the second level ou’s are of objectclass docGroup.

6.2 Organizational Groups

Organizational groups for most entities needing directory services are hierarchical, so a great
deal of effort was expended in the early years of directory technology to make the hierarchy of
the groups and subgroups the guideline for the directory hierarchy.

Experience revealed that large complex entities undergo far too many structural changes to
continue to reorganize them based on the group structure.

For the DOC intranet, the directory server is not being used just for typical directory information
lookup. It is also providing infrastructure information for the intranet to support application
needs such as authentication and authorization. For group information, it must answer queries
that are highly inefficient for both traditional directory structures and relational databases.

The Group Server (see Figure 1: Directory Subsystem Diagram) will help service these queries.
It will perform a large number of queries to the directory service upon initialization or reload to
obtain the organizational group entries. Then it will cache the information in a data structure that
maximizes efficiency for the group queries.

DOC Intranet Architecture 84

The docGroups that live within a certain ou will all be directly under that ou, and will contain an
attribute that specifies the parent group. For the highest group in any hierarchy, the parent
attribute will contain the keyword null. This will allow an easy means for the Group Server to
construct its data structure and allow easy modification of the group structure for system
administrators.

6.3 docGroup Entries

6.3.1 The docGroup Objectclass

docGroup entries contain information about each group, the group’s parent group, the group’s
managing group or person, and a list of group members. The RDN for each docGroup entry is
docIid.

For a top-level group, the docParentGroup attribute contains the keyword null.

The docAdmin can contain the IID of an individual or another group.

objectClass docGroup

 requires

 objectClass,

 ou,

 docIid,

 cn,

 docCnAbbrev,

 docParentGroup,

 docAdmin

 allows

 description,

 docInfoUrl,

 docMember

6.3.2 docGroup Attributes

DOC Intranet Architecture 85

Attribute Name Syntax OID

Ou cis 2.5.4.11

organizationalUnitName. For a docGroup entry, this will contain the ou under the
groups ou to which the group belongs.

DocCnAbbrev cis, 1 (local)

An abbreviated version of the commonName (cn) attribute. This must be unique
among docGroups. It should be easily to remember and refer to by humans, as it will
be a useful way to refer to a group by developers and group members.

DocParentGroup cis, 1 (local)

The dn of the parent group of this group. If the group is at the top of its hierarchy, then
it contains the keyword null.

DocGroupAdmin ces (local)

The IID of the individual or group that manages the group. It is legitimate for this
value to be self-referential- for all members of the group to be able manage the group.

Description cis 2.5.4.13

Description of the group.

DocInfoUrl ces (local)

URL associated with the group.

DocMember ces (local)

One entry for each member of the group. The IID can refer to an individual or a group.

6.3.3 docGroup Access Control

Full privileges are granted to the Group Server. Since even the Directory Management
application will use the Group Server for group information reading and changes, there is no
need to grant privilege to it.

6.3.4 Example docGroup Entry

dn: docIid=r4h01, ou=DOC Org, ou=groups, o=doc.gov

objectClass: top

objectClass: docGroup

DOC Intranet Architecture 86

docIid: r4h01

cn: Office of Group Examples

docParentGroup: r4h00

docAdmin: r4gYi

docCnAbbrev: OOGE

description: An example group for the docOrgGroup objectclass

docInfoUrl: http://host12.doc.gov/exampleGroups/OOGE/

docMember: u483i

docMember: K8Rre

docMember: PHk2m

docMember: E3w22

docMember: v7Jes

7 References

[RFC2251] Lightweight Directory Access Protocol (v3)

http://www.faqs.org/rfcs/rfc2251.html

Internet Engineering Task Force

http://www.ietf.org/

Internet Assigned Numbers Authority

http://www.iana.org/

Netscape Universal Schema Reference

http://developer.netscape.com/docs/manuals/directory/schema2/41/contents.htm

OpenLDAP 2.0 Administrator’s Guide

http://www.openldap.org/doc/admin/slapdconfig.html

DOC Intranet Architecture 87

Figure 1: Directory Subsystem

Directory Subsystem

Directory
Management dir API

App 1 dir API

App 2

Group
Service

Directory
ServiceLDAP

LDAP

IACP

IACP

LDAP

IACP

LDAP

DOC Intranet Architecture 88

Figure 2: Directory Schema

o: doc.gov

ou: Managers

ou: groups

ou: people

ou: apps

ou: DOC Org

ou: User
Defined

docGroup
entry

docAppUser
entry

docApp
entry

docPerson
entry

ou: External Org

DOC Intranet Architecture 89

Appendix E: Directory API for the DOC Intranet Directory
Service

Version 1.0

Revised: 2000.11.12

1 Introduction
Directory service and Group Service information needs to be accessed by many different
applications within the DOC intranet. The purpose of the API is to provide easy access to that
information. This document describes the API for Java, Perl, and PHP.

2 Terminology
attribute

A single unit of information in an LDAP entry with an associated syntax. Analogous to a
field in a database record.

API

Application Programming Interface. A set of routines provided for a developer to access
programmatic functionality that has already been developed.

dn

Distinguished Name. The fully qualified name of an LDAP entry. It is unique within the
directory, and comprised of the RDNs of the entry from root.

DOC

Department of Commerce.

IID

Intranet ID. The identifier for any entry in the DOC intranet directory service. The

IID is unique in the entire directory service. For instance, an application cannot have the
same IID as a person. It is a string composed of numbers and upper and lower case
letters, and is case-sensitive.

LDAP

Lightweight Directory Access Protocol. Version 3 is defined in RFC2251. While the
protocol itself does not describe implementation details for a directory service, in

DOC Intranet Architecture 90

common usage the term is used to describe a directory server that supports the LDAP
protocol.

RDN

Relative Distinguished Name. The identifier that is unique to a given entry at its level in
the hierarchy. It is always the leftmost portion of an entry’s dn.

3 Overview

3.1 Using the Directory API

The Directory API provides applications an easy means of accessing DOC directory service and
Group Service information. Rather than making calls to the LDAP server and group server
directly, the application uses API calls that deal with networking, protocol, and data handling
issues. The programmer need only concentrate on the application they are trying to build.

A diagram showing the Directory API’s place in the directory portion of the DOC intranet
infrastructure is included in Figure 1: Directory Subsystem Diagram.

3.2 The docDirectory.conf File

A file named docDirectory.conf is associated with each of the libraries that implement the
Directory API. The file contains the hostname and port of the directory service, the hostname
and port of the Group Service, and the application IID and password for binding. The following
is a sample docDirectory.conf.

###

DocDirectory.conf

#

Configuration file for the DOC Directory API library

###

ldapHost=<hostname>

ldapPort=<port>

ldapHost=myhost.mydomain.gov

ldapPort=636

DOC Intranet Architecture 91

groupServerHost=<hostname>

groupServerPort=<port>

groupServerHost=myhost.mydomain.gov

groupServerPort=7000

appIid=<iid>

appPassword=<password>

appIid=zU8oS

appPassword=myapppassword

4 The Directory API for Java

4.1 The DocDirectory Class

To use the Directory API in Java, one obtains a DocDirectory object and calls its methods.

The DocDirectory object is obtained by calling the static getInstance method on the
DocDirectory class. The getInstance method takes a single parameter, the name of the
docDirectory.conf file. The contents of the file are discussed in detail in the next section.

Once the DocDirectory object is obtained, a variety of methods are available to obtain
information from the directory service and Group Service.

4.2 Obtaining the DocDirectory Class

public static DocDirectory getInstance(String confFileName)

throws BadConfigParametersException FIXME

Parameters:

ConfFileName - The name of the docDirectory.conf file including path if necessary.

Returns:

A DocDirectory object initialized with the contents of the supplied conf file.

DOC Intranet Architecture 92

Throws:

BadConfigParametersException – The contents of the docDirectory.conf file did
not enable the DocDirectory object to establish a connection to the directory
service.

4.3 Retrieving App Information in Java

public boolean isApp(String iid)

Parameters:

iid – The IID of a potential application.

Returns:

True if the IID corresponds to a docApp entry in the directory.

public Properties getAppAttributes(String appIid)

throws NoSuchAppException

Parameters:

appIid – The IID of the application.

Returns:

A Properties object containing all of the application’s attributes for which the requesting
entity has read privilege.

Throws:

NoSuchAppException – The IID supplied either does not exist, or does not
correspond to a docApp entry.

4.4 Retrieving Person Information in Java

public boolean isPerson(String iid)

Parameters:

iid – The IID of a potential person.

Returns:

True if the IID corresponds to a docPerson entry in the directory.

DOC Intranet Architecture 93

public String getIidForUsername(String username)

throws NoSuchPersonException

Parameters:

username – The intranet uid of the person.

Returns:

The IID of the person corresponding to the username.

Throws:

NoSuchPersonException – The username supplied does not exist.

public Properties getPersonAttributes(String userIid)

throws NoSuchPersonException

Parameters:

userIid – The IID of the person.

Returns:

A Properties object containing all of the person’s attributes for which the requesting
entity has read privilege.

Throws:

NoSuchPersonException – The IID supplied either does not exist, or does not
correspond to a docPerson entry.

public Vector getPeopleAttributes(String[] userIids,

String[] attributes)

throws NoSuchAttributeException, InsufficientPrivilegeException

public Vector getPeopleAttributes(Vector userIids,

Vector attributes)

throws NoSuchAttributeException, InsufficientPrivilegeException

Parameters:

userIid – An array or Vector of Strings that identify docPerson entries.

DOC Intranet Architecture 94

attributes – An array or Vector of Strings containing the attributes that are to be
returned. It is not necessary to include docIid in this list, as it is always returned.

Returns:

A Vector containing Properties objects. Each Properties object contains one
docPerson’s attributes for which the requesting entity has read privilege. If an object
that is not a String is in the Vector or a String that does not correspond to a docPerson
is encountered, it is ignored: no Exception is thrown.

Throws:

NoSuchPersonException – The IID supplied either does not exist, or does not
correspond to a docPerson entry.

InsufficientPrivilegeException – The binding entity does not have the
necessary privilege to read one or more attributes requested.

public boolean isPersonInGroup(String userIid,

String groupIid)

throws NoSuchPersonException, NoSuchGroupException

public boolean isPersonInGroup(String userIid,

String groupIid,

boolean recurse)

throws NoSuchPersonException, NoSuchGroupException

Parameters:

userIid – The IID of the person.

groupIid – The IID of the group.

recurse - True causes the method to examine all subgroups for membership. False
causes the method to consider only direct membership in the group. If the
parameter is not present, defaults to true.

Returns:

True if the user is a member of the group, false otherwise.

DOC Intranet Architecture 95

Throws:

NoSuchPersonException – The IID supplied either does not exist, or does not
correspond to a docPerson entry.

NoSuchGroupException – The IID supplied either does not exist, or does not
correspond to a docGroup entry.

public Vector getGroupsForPerson(String userIid)

throws NoSuchPersonException

public Vector getGroupsForPerson(String userIid, boolean recurse)

throws NoSuchPersonException

Parameters:

usersIid – The IID of the person for whom group information is being requested.

recurse – True causes the method to return all supergroups. False causes the method
to return only groups in which the person has direct membership. If the parameter
is not present, defaults to true.

Returns:

A Vector containing Strings that correspond to the IIDs of groups in which the user is a
member.

Throws:

NoSuchPersonException – The IID supplied either does not exist, or does not
correspond to a docPerson entry.

public Vector getSubGroupsForUser(String userIid,

String superGroupIid)

throws NoSuchPersonException, NoSuchGroupException

Parameters:

userIid – The IID of the person.

superGroupIid – The IID of the group.

Returns:

A Vector containing Strings that correspond to the IIDs of all subgroups that are
hierarchically under the superGroup in which the user is a member.

DOC Intranet Architecture 96

Throws:

NoSuchPersonException – The IID supplied either does not exist, or does not
correspond to a docPerson entry.

NoSuchGroupException – The IID supplied for superGroup either does not exist, or
does not correspond to a docGroup entry.

4.5 AppUser Information

4.5.1 Retrieving AppUser Information in Java

public Properties getAppUserAttributes(String userIid, String appIid)

throws NoSuchPersonException, NoSuchAppException

Parameters:

userIid – The IID of the person.

appIid – The IID of the application.

Returns:

A Properties object containing all of the appUser’s attributes for which the requesting
entity has read privilege.

Throws:

NoSuchPersonException – The IID supplied either does not exist, or does not
correspond to a docPerson entry.

NoSuchAppException – The IID supplied for app either does not exist, or does not
correspond to a docApp entry.

4.5.2 Setting AppUser Information in Java

public void setAppUserAttributes(String userIid,

String appIid,

Properties changedAttributes)

throws NoSuchPersonException, NoSuchAppException,
NoSuchAttributeException

Parameters:

userIid – The IID of the person.

DOC Intranet Architecture 97

appIid – The IID of the application.

changedAttributes – A Properties object containing the new values of the
attributes that are to be changed.

Throws:

NoSuchPersonException – The IID supplied either does not exist, or does not
correspond to a docPerson entry.

NoSuchAppException – The IID supplied for app either does not exist, or does not
correspond to a docApp entry.

NoSuchAttributeException – One or more attributes in the changedAttributes
Properties does not exist in the docAppUser entry.

InsufficientPrivilegeException – The binding entity does not have the
necessary privilege to change one or more attributes it is attempting to change.

4.6 Retrieving Group Information in Java

public boolean isGroup(String iid)

Parameters:

iid – The IID of a potential group.

Returns:

True if the IID corresponds to a docGroup entry in the directory.

public Properties getGroupAttributes(String groupIid)

throws NoSuchGroupException

Parameters:

groupIid – The IID of the group.

Returns:

A Properties object containing all of the group’s attributes for which the requesting
entity has read privilege.

Throws:

NoSuchGroupException – The IID supplied either does not exist, or does not
correspond to a docGroup entry.

DOC Intranet Architecture 98

public int getGroupMemberCount(String groupIid)

throws NoSuchGroupException

public int getGroupMemberCount(String groupIid, boolean recurse)

throws NoSuchGroupException

Parameters:

groupIid – The IID of the group.

recurse – True causes the method to count members of the group and subgroups.
False causes only immediate members to be counted. If recurse is not specified,
it is true by default.

Returns:

The number of members in the group.

Throws:

NoSuchGroupException – The IID supplied either does not exist, or does not
correspond to a docGroup entry.

public Vector getGroupMembers(String groupIid, boolean recurse)

throws NoSuchGroupException

Parameters:

groupIid – The IID of the group.

recurse – True causes the method to return members of the group and all subgroups.
False causes only immediate docPerson members to be returned. If recurse is
not specified, it is true by default.

Returns:

A Vector containing Strings which correspond to the IIDs of the members of the group.
A member corresponds to a docPerson, not a subgroup of the group.

Throws:

NoSuchGroupException – The IID supplied either does not exist, or does not
correspond to a docGroup entry.

DOC Intranet Architecture 99

public boolean isGroupWithinGroup(String groupIid,

String superGroupIid)

throws NoSuchGroupException

public boolean isGroupWithinGroup(String groupIid,

String superGroupIid,

boolean recurse)

throws NoSuchGroupException

Parameters:

groupIid – The IID of the subGroup.

superGroupIid – The IID of the superGroup.

recurse - True causes the method to examine the group and all subgroups for
membership. False causes the method to consider only immediate member groups.
If recurse is not specified, it is true by default.

Returns:

True if the group is hierarchically contained by the superGroup, false otherwise.

Throws:

NoSuchGroupException – The IID supplied either does not exist, or does not
correspond to a docGroup entry.

public String getParentGroup(String groupIid)

throws NoSuchGroupException

Parameters:

groupIid – The IID of the group.

Returns:

The IID of the immediate parent of the group. If the group is the highest in its
hierarchy, returns an empty String.

Throws:

NoSuchGroupException – The IID supplied either does not exist, or does not
correspond to a docGroup entry.

DOC Intranet Architecture 100

public Vector getSubGroups(String groupIid)

throws NoSuchGroupException

public Vector getSubGroups(String groupIid, boolean recurse)

throws NoSuchGroupException

Parameters:

groupIid – The IID of the group.

recurse - True causes the method to return all member groups and subgroups. False
causes only immediate member groups to be returned. If recurse is not
specified, it is true by default.

Returns:

A Vector containing Strings corresponding to the IIDs of the immediate subGroups of
the group. If the group is the lowest in its hierarchy, returns an empty Vector.

Throws:

NoSuchGroupException – The IID supplied either does not exist, or does not
correspond to a docGroup entry.

DOC Intranet Architecture 101

5 The Directory API for Perl

5.1 The DocDirectory Object

The Perl Directory API library resides in a module named DocIntranet, which is contained in the
file DocIntranet.pm. To use the Directory API in Perl, one creates a DocDirectory object and
calls methods on it.

The DocDirectory object’s handle is obtained by calling the new method of the DocDirectory
class. The new method takes the name of the docDirectory.conf file as its only parameter.

Once the DocDirectory handle is obtained, a variety of methods are available to obtain
information from the directory service and Group Service.

5.2 Obtaining a DocDirectory Handle

new

$docdir = new DocDirectory docdirectoryconffilename

Constructor. Creates a new DocDirectory handle initialized with the parameters of the
docDirectory.conf file. The docdirectoryconffilename parameter may include the file’s path
if necessary.

5.3 Retrieving App Information in Perl

is_app

$docdir->is_app(iid)

Returns true if the iid corresponds to a docApp entry in the directory.

get_app_attrs

$docdir->get_app_attrs(appiid)

Returns a hash containing all of the application’s attributes for which the requesting entity
has read privilege.

5.4 Retrieving Person Information inPerl

is_person

$docdir->is_person(iid)

Returns true if the iid corresponds to a docPerson entry in the directory.

DOC Intranet Architecture 102

get_iid_for_uname

$docdir->get_iid_for_uname(username)

Returns a scalar containing the IID of the user.

get_person_attrs

$docdir->get_person_attrs(useriid)

Returns a hash containing all of the user’s attributes for which the requesting entity has read
privilege.

get_people_attrs

$docdir->get_people_attrs(useriids, attributes)

Returns an array filled with hashes. Each hash contains one docPerson’s attributes for
which the requesting entity has read privilege. If any item in the useriids array does not
correspond to a docPerson entry, it is ignored.

Takes the following arguments:

useriids

An array containing the IIDs that identify docPerson entries.

attributes

An array containing the attributes that are to be returned. It is not necessary to include
docIid in this list, as it is always returned.

is_person_in_group

$docdir->is_person_in_group(useriid, groupiid[, recurse])

Returns true if the person is a member of the group, false otherwise. If the recurse
parameter is true, the method examines all subgroups for membership. False causes the
method to consider only direct membership in the group. If the parameter is not present,
defaults to true.

get_groups_for_person

$docdir->get_groups_for_person(useriid[, recurse])

Returns an array containing the IIDs of groups in which the user is a member. The
keys of the array are numeric and arbitrarily assigned. If recurse is true, the method
returns all supergroups. False causes the method to return only groups in which the
person has direct membership. If the parameter is not present, defaults to true.

DOC Intranet Architecture 103

get_subgroups_for_person

$docdir->get_subgroups_for_person(useriid, supergroupiid)

Returns an array containing the IIDs of all subgroups that are hierarchically under the
supergroup in which the user is a member.

5.5 AppUser Information

5.5.1 Retrieving AppUser Information in Perl

get_appuser_attrs

$docdir->get_appuser_attrs(useriid, supergroupiid)

Returns a hash containing all of the appUser’s attributes for which the requesting entity
has read privilege.

5.5.2 Setting AppUser Information in Perl

set_appuser_attrs

$docdir->set_appuser_attrs(useriid, appiid)

Returns a hash containing all of the appUser’s attributes for which the requesting entity
has read privilege.

5.6 Retrieving Group Information in Perl

is_group

$docdir->is_group(iid)

Returns true if the iid corresponds to a docGroup entry in the directory.

get_group_attrs

$docdir->get_group_attrs(groupiid)

Returns a hash containing all of the group’s attributes for which the requesting entity
has read privilege.

get_group_member_count

$docdir->get_group_member_count(groupiid[, recurse])

Returns the number of members in the group.

DOC Intranet Architecture 104

If recurse is true, causes the method to count members of the group and subgroups.
False causes only immediate members to be counted. If recurse is not specified, it is
true by default.

get_group_members

$docdir->get_group_members(groupiid[, recurse])

Returns an array containing the IIDs of the members of the group. A member
corresponds to a docPerson, not a subgroup of the group. The keys of the array are
numeric and arbitrarily assigned.

If recurse is true, causes the method to return members of the group and all subgroups.
False causes only immediate docPerson members to be returned. If recurse is not
specified, it is true by default.

is_group_within_group

$docdir->is_group_within_group(groupiid, supergroupiid[, recurse])

Returns true if the group is hierarchically contained by the supergroup, false otherwise.

If recurse is true, the method examines the group and all subgroups for membership.
False causes the method to consider only immediate member groups. If recurse is
not specified, it is true by default.

get_parent_group

$docdir->get_parent_group(groupiid)

Returns the IID of the immediate parent of the group. If the group is the highest in its
hierarchy, returns an empty string.

get_subgroups

$docdir->get_groups(groupiid[, recurse])

Returns an array containing the IIDs of the immediate subGroups of the group. If the
group is the lowest in its hierarchy, returns an empty array. The keys of the array are
numeric and arbitrarily assigned.

If recurse is true, the method returns all member groups and subgroups. False causes
only immediate member groups to be returned. If recurse is not specified, it is true
by default.

DOC Intranet Architecture 105

6 The Directory API for PHP

6.1 The docdirectory Object

To use the Directory API in PHP, one creates a DocDirectory object and calls methods on it.

The DocDirectory object’s handle is obtained by calling the new method of the DocDirectory
class. The new method takes the name of the docDirectory.conf file as its only parameter.

Once the DocDirectory handle is obtained, a variety of methods are available to obtain
information from the directory service and Group Service.

6.2 Obtaining a docdirectory Handle

new

$docdir = new docdirectory(docdirectoryconffilename)

Constructor. Creates a new docdirectory object handle initialized with the parameters of the
docDirectory.conf file. The docdirectoryconffilename parameter may include the file’s path
if necessary.

6.3 Retrieving App Information in PHP

isApp

$docdir->isApp(iid)

Returns true if the iid corresponds to a docApp entry in the directory.

getAppAttrs

$docdir->getAppAttrs(appiid)

Returns an array containing all of the application’s attributes for which the requesting entity
has read privilege. The keys of the array are the names of the attributes.

6.4 Retrieving Person Information inPHP

isPerson

$docdir->isPerson(iid)

Returns true if the iid corresponds to a docPerson entry in the directory.

getIidForUname

$docdir->getIidForUname(username)

DOC Intranet Architecture 106

Returns the IID of the user.

getPersonAttrs

$docdir->getPersonAttrs(useriid)

Returns an array containing all of the user’s attributes for which the requesting entity has
read privilege. The keys of the array are the names of the attributes.

getPeopleAttrs

$docdir->getPeopleAttrs(useriids, attributes)

Returns an array filled with associative arrays. Each associative array contains one
docPerson’s attributes for which the requesting entity has read privilege. If any item in the
useriids array does not correspond to a docPerson entry, it is ignored.

Takes the following arguments:

useriids

An array containing the IIDs that identify docPerson entries.

attributes

An array containing the attributes that are to be returned. It is not necessary to include
docIid in this list, as it is always returned.

isPersonInGroup

$docdir->isPersonInGroup(useriid, groupiid, recurse)

Returns true if the person is a member of the group, false otherwise. If the recurse
parameter is true, the method examines all subgroups for membership. False causes the
method to consider only direct membership in the group.

getGroupsForPerson

$docdir->getGroupsForPerson(useriid, recurse)

Returns an array containing the IIDs of groups in which the user is a member. The
keys of the array are numeric and arbitrarily assigned. If recurse is true, the method
returns all supergroups. False causes the method to return only groups in which the
person has direct membership.

getSubgroupsForPerson

$docdir->getSubgroupsForPerson(useriid, supergroupiid)

DOC Intranet Architecture 107

Returns an array containing the IIDs of all subgroups that are hierarchically under the
supergroup in which the user is a member. The keys of the array are numeric and
arbitrarily assigned.

6.5 AppUser Information

6.5.1 Retrieving AppUser Information in PHP

getAppuserAttrs

$docdir->getAppuserAttrs(useriid, supergroupiid)

Returns an array containing all of the appUser’s attributes for which the requesting entity
has read privilege. The keys of the array are the names of the attributes.

6.5.2 Setting AppUser Information in PHP

setAppuserAttrs

$docdir->setAppuserAttrs(useriid, appiid)

Returns an array containing all of the appUser’s attributes for which the requesting entity
has read privilege. The keys of the array must be the names of the attributes.

6.6 Retrieving Group Information in PHP

isGroup

$docdir->isGroup(iid)

Returns true if the iid corresponds to a docGroup entry in the directory.

getGroupAttrs

$docdir->getGroupAttrs(groupiid)

Returns an array containing all of the group’s attributes for which the requesting entity has
read privilege. The keys of the array are the names of the attributes.

getGroupMemberCount

$docdir->getGroupMemberCount(groupiid, recurse)

Returns the number of members in the group.

If recurse is true, causes the method to count members of the group and subgroups.
False causes only immediate members to be counted.

DOC Intranet Architecture 108

getGroupMembers

$docdir->getGroupMembers(groupiid, recurse)

Returns an array containing the IIDs of the members of the group. A member
corresponds to a docPerson, not a subgroup of the group. The keys of the array are
numeric and arbitrarily assigned.

If recurse is true, causes the method to return members of the group and all
subgroups. False causes only immediate docPerson members to be returned.

isGroupWithinGroup

$docdir->isGroupWithinGroup(groupiid, supergroupiid, recurse)

Returns true if the group is hierarchically contained by the supergroup, false otherwise.

If recurse is true, the method examines the group and all subgroups for membership.
False causes the method to consider only immediate member groups.

getParentGroup

$docdir->getParentGroup(groupiid)

Returns the IID of the immediate parent of the group. If the group is the highest in its
hierarchy, returns an empty string.

getSubgroups

$docdir->getGroups(groupiid, recurse)

Returns an array containing the IIDs of the immediate subGroups of the group. If the
group is the lowest in its hierarchy, returns an empty array. The keys of the array are
numeric and arbitrarily assigned.

If recurse is true, the method returns all member groups and subgroups. False causes
only immediate member groups to be returned.

DOC Intranet Architecture 109

Figure 1: Directory Subsystem Diagram

Directory Subsystem

Directory
Management dir API

App 1 dir API

App 2

Group
Service

Directory
ServiceLDAP

LDAP

IACP

IACP

LDAP

IACP

LDAP

DOC Intranet Architecture 110

Figure 2: Directory Schema Diagram

o: doc.gov

ou: Managers

ou: groups

ou: people

ou: apps

ou: DOC Org

ou: User
Defined

docGroup
entry

docAppUser
entry

docApp
entry

docPerson
entry

ou: External Org

DOC Intranet Architecture 111

Appendix F: DOC Intranet Inter-Application
Communication Protocol

1 Introduction
This document defines the Department of Commerce Inter-Application Communication
Protocol (DOCIACP), by which participating applications within the Department of
Commerce Intranet can communicate with each other. Communications are carried on top of
the HTTP protocol. As such, the communications consist of exactly two participants,
referred herein as the client and the server. The client is the participant which initiates the
transaction, by requesting information from the server.

The goals of the DOCIACP include the following:

• The server should be able to positively authenticate the client's identity

• The server should be able to determine, based on the client's identity, what, if any,
information to provide to the client

• The server should have the option of requiring an encrypted (SSL) link

• Information exchange should be in XML when practicable, to provide ease of
interchange and manipulation. However, this should not exclude other content-types
from being returned by the servers when appropriate.

• Both clients and servers should be easy to implement in a number of languages, including
at the minimum, Java, Perl and PHP

• There should be a well defined interface for a client to determine what services are
available from the server, and what the calling convention is to receive those services

The DOCIACP protocol makes use of public key cryptography methods to accomplish its
authentication tasks. See [CRYPTO] for details.

This document does not cover the various issues related to storage and retrieval of public and
private keys, though it is expected that public keys will be stored in a directory service such a
defined by [DIRSVC] or as provided by a third party PKI implementation..

This document does not cover the Applications Programming Interfaces (API's) used on
either the client or server side to build applications. See [IACP-API] for specific information
on API's and usage.

2 Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

DOC Intranet Architecture 112

document are to be interpreted as described in RFC 2119 [RFC2119]. An implementation is
not compliant if it fails to satisfy one or more of the MUST or REQUIRED level
requirements for the protocols it implements. An implementation that satisfies all the MUST
or REQUIRED level and all the SHOULD level requirements for its protocols is said to be
"unconditionally compliant"; one that satisfies all the MUST level requirements but not all
the SHOULD level requirements for its protocols is said to be "conditionally compliant."

The Inter-Application Communication Protocol provides a means of communication between
two participants, the client and the server. The communication is referred to herein as the
transaction.

2.1 DOCIACP Client Application Requirements

The client application MUST support communications with HTTP servers as described in
[RFC2616].

The client MAY support HTTPS client side communications, as defined in [SSL].

The client MAY support encryption and decryption as defined in [CRYPTO].

Clients supporting encryption and decryption MUST have a public key / private key pair as
defined in [CRYPTO].

2.2 DOCIACP Server Application Requirements

The server application MUST support HyperText Transfer Protocol (HTTP), as described in
[RFC2616].

The server application MAY support HTTPS, as described in [SSL].

The server application MAY support encryption and decryption as defined in [CRYPTO].

3 Terminology
APPLICATION_IID The name of the CGI variable which holds an application instance’s

unique identifier.

client application A system which requests data from a server application via HTTP(S)

HTTP header A header field in a HTTP-response. See [RFC2616]

HTTP CGI parameter A URL-encoded or form encoded variable in a HTTP request. See
[RFC2616]

nonce A server generated string containing some random component.
See Section 6.0 and [RFC2617].

server application A system that provides a service to client applications HTTP(S)

DOC Intranet Architecture 113

service A resource returned by a server in response to a HTTP(S) request

service name A string which identifies a service provided by a DOCIACP server.

service URL The URL by which the server is accessed for DOCIACP
communications.

4 Overview
The DOCIACP protocol establishes a means of communications between a server and a
client within the Department of Commerce Intranet. Participating applications can be clients,
servers or both. For any given transaction, an application can be a client or server. If bi-
directional exchange of information is required, then multiple transactions must be executed.

Each server provides one or more services to clients. A service is simply an available
transaction by which the client makes a request for data. The client forms a request including
the service name and any other necessary HTTP CGI parameters to define the request, and
the server returns some amount of data in response to that request.

All services for a given server are accessed through a single URL known as the application’s
DOCIACP service URL. All requests must be via the HTTP POST or GET methods. Since
all services are accessed via a single URL, various CGI variables are set to indicate which
service is desired. For example, to access the catalog service, a CGI variable
'Service=Catalog' would be submitted with the request. The method of publishing these
well-known application specific DOCIACP service URL's is beyond the scope of this
document, but it is envisioned that they will be published in the directory service.

Every server providing DOCIACP services is required to provide at least one service, the
'catalog service.' The catalog service is simply a listing of all the available services provided
by a server. The catalog is returned as an XML document, conforming to a predefined
catalog service DTD. The catalog service will list all services (including itself) by service
name, along with the CGI parameters it accepts, and miscellaneous information such as
which parameters are optional, and descriptions of the service itself and each of its
parameters. Developers should refer to the catalog service on servers they intend to make
client connections to so as to ensure that the services and calling parameters are as expected.

Applications can be written in such a way that administrators can configure which services
are turned on and which are turned off. The catalog service SHOULD correctly reflect only
the currently available services. The server MUST return a graceful 400 class error code if a
client requests a service that does not exist or is disabled.

Once a client decides to request a service from a server, the client prepares a HTTP POST
request, sets the service name and any other required HTTP CGI parameters, and sends the
request to the server.

At this point, the server may optionally require authentication of the client. See section 5.2.

DOC Intranet Architecture 114

Once the server's authentication and authorization requirements have been met, the server
examines the request, and prepares the document to return to the client. This document
would usually be an XML document, though it could be anything, including image files or
word processing documents. As in HTTP, the type of the return document is communicated
back to the client via the Content-type HTTP header.

5 Protocol Definition
The DOCIACP protocol is built on top of HTTP 1.0 protocol. A new authorization scheme
is introduced to provide public key based authentication. As part of this authentication
scheme, each instance of a DOCIACP application has a unique identifier called the
APPLICATION_IID. The APPLICATION_IID is not tied to a particular piece of software,
but rather, to a particular installed and running copy of the software. This allows servers to
decide with which applications they wish to share data on a fine-grained basis. For example,
a given server may wish to only provide services to the installed copy of a client application
designated to handle a particular Bureau.

All applications, whether acting as client or server, require a unique APPLICATION_IID. If
an application serves as both a client and a server, then the same APPLICATION_IID is used
in both situations. The term APPLICATION_IID may be qualified as a
CLIENT_APPLICATION_IID or a SERVER_APPLICATION_IID for purposes of
clarifying which application’s APPLICATION_IID is referred to. This in no way indicates
that a single application has more than one APPLICATION_IID.

5.1 The DOCIACP Request

A transaction begins with a client constructing a HTTP 1.0 request for a service. The
connection is made to a well-known service URL for the server. The following is an
example request for the catalog service from a server application.

POST /cgi-bin/IACP_URL HTTP/1.0

Content-type: text/x-www-form-urlencoded

Accept: text/xml

Service=Catalog

Source=<CLIENT_APPLICATION_IID>

Table 1 summarizes the service request format. Note that the required? column refers to
whether it is a protocol violation to not return that item, not to whether or not the server will
have sufficient information to complete the request. For example, it is not a protocol
violation to not supply an Authorization header if so requested, but the server will almost
certainly not return the information desired by the client.

DOC Intranet Architecture 115

Table 1: Minimum DOCIACP Client Request Components

Item Type Name Value Required?

HTTP Request POST <path to handler> HTTP/1.0 YES

HTTP Header Content-type: text/x-www-form-urlencoded YES

HTTP Header Authorization: DOCIACP <encoded nonce> NO

CGI Variable Service <Service Name> YES

CGI Variable Source <CLIENT_APPLICATION_IID> YES

See Section 5.2 for discussion of the Authorization header.

In addition to the components listed in Table 1, clients can supply additional headers and
CGI variables as defined by the HTTP specification, and as required as parameters to the
particular service being requested. In particular, clients may wish to include headers relating
to cache and proxy control. The server may or may not choose to use additional components.

5.2 The DOCIACP Authentication Scheme

On receiving a request, the server may either service the request or demand authentication
information. Servers not requiring authentication merely construct a response, as per section
5.3.

The authentication process is per the HTTP 1.0 specification, with a new authentication type.
Servers requiring authentication return a 'WWW-Authenticate DOCIACP_AUTH' line to the
client indicating that authentication is required. The DOCIACP_AUTH term denotes the
type of authorization required, and is the only authorization type defined by this protocol.
Servers and clients MAY also support BASIC or DIGEST authentication schemes per
[RFC2617].

The WWW-Authenticate header returned to the client also contains a 'nonce' (See
[RFC2617] for a definition). A nonce is a pseudo-random string of characters which is used
as a challenge string. When a client receives a nonce as part of a WWW-Authenticate HTTP
header, the client is responsible for encrypting the nonce with the client's own private key,
and returning the encrypted nonce to the server in a Authorization header. Once the server
receives the Authorization header from the client, the server can verify the client's identity by
decrypting the nonce using the client's public key. Servers operating in non-SSL mode
should consider utilizing a nonce generation policy which guards against replay attacks. See
section 6.0 for details.

The following transcript describes a DOCIACP_AUTH transaction.

As above, the transaction begins with the client requesting access to a service.

POST /cgi-bin/IACP_URL HTTP/1.0

DOC Intranet Architecture 116

Content-type: text/x-www-form-urlencoded

Accept: text/xml

Service=Catalog

Source=<CLIENT_APPLICATION_IID>

This time, the server demands authentication.

HTTP/1.0 401 Unauthorized

Date: Fri, 31 Dec 1999 23:59:59 GMT

Server: <SERVER_APPLICATION_IID>

Content-type: text/plaintext

WWW-Authenticate: DOCIACP_AUTH aJq237YYYzp034rgPOkj

Here, the nonce is ' aJq237YYYzp034rgPOkj'. Upon receiving this, the client encrypts the
nonce using the client's private key, and resends the request, repeating back the plaintext
nonce in a Nonce header, and adding an Authorization header.

POST /cgi-bin/IACP_URL HTTP/1.0

Content-type: text/x-www-form-urlencoded

Accept: text/xml

Nonce: aJq237YYYzp034rgPOkj

Authorization: 3!h&h2)!z94e]@62

Service=Catalog

Source=<CLIENT_APPLICATION_IID>

On receiving the Authorization HTTP header, the server must look up the client’s public key,
and verify the authenticity of the client by decrypting the nonce using the key. If the nonce
decrypts correctly, then the client is authenticated. The server must then decide what, if any,
data to provide to the client.

DOC Intranet Architecture 117

5.3 The DOCIACP Response

If the server decides to service the request, it simply returns a page in accordance with the
HTTP 1.0 specification. No additional headers are required. An example response follows:

HTTP/1.0 200 OK

Date: Fri, 31 Dec 1999 23:59:59 GMT

Content-type: text/xml

<?xml version="1.0"?>

<!DOCTYPE SYSTEM
"http://dtd.doc.gov/iacp_catalog.dtd">

<Catalog>
<Service>

<ServiceName>Catalog</ServiceName>

<ServiceDescription>

Returns XML describing all

available services

</ServiceDescription>

<ReturnType>text/xml</ReturnType>

</Service>

</Catalog>

Here, the server has returned a catalog containing only itself as a service.

6 Selection of Nonce values
Per [RFC2617], the nonce is a server-specified data string which should be uniquely
generated each time a 401 response is made. It is recommended that this string be base64 or
hexadecimal data. Specifically, since the string is passed in the header lines as a quoted
string, the double-quote character is not allowed.

The contents of the nonce are implementation dependent. The quality of the implementation
depends on a good choice.

DOC Intranet Architecture 118

Transactions which are not conducted over a secure SSL link are potentially susceptible to
replay attacks, in which third parties listening in on the transaction capture the Authorization
header, and resubmit the request using the stale Authorization header. A number of methods
of nonce selection are possible to minimize or eliminate the risks of such a replay attack.

First, replay attacks are not possible over SSL links. Servers wanting maximum protection of
their resources should make resources available only over SSL links.

Second, a timestamp can be encoded into the nonce. Authorization headers referencing a
given nonce are only accepted within some fixed amount of time beyond the timestamp
contained in the nonce. Since the nonce is encrypted with the client’s private key, third
parties could only use the nonce as stamped, limiting unauthorized disclosure.

Third, the client’s IP address could be encoded into the nonce. This requires third parties to
both intercept the transaction, and successfully IP-spoof their address. Encoding the client’s
IP address into the nonce looses its effectiveness when proxies are involved, as spoofing
becomes unnecessary when the third party is able to go through the same proxy server as the
client.

Finally, the server can maintain a list of nonces it has given out, and remove a nonce from the
list when it is first submitted by any client. No other third party could not then replay the
Authorization header, as the nonce it refers to would no longer be valid. This technique
eliminates the possibility of replay attacks, at the cost of the server having to save generated
nonce values across consecutive connections.

The method used to generate the nonce as well as the server’s policy for nonce acceptance is
opaque to the client. Servers providing non-SSL encrypted service and wanting maximum
security SHOULD implement a one-time nonce policy.

7 Catalog Service Definition
The catalog service is the only service which all DOCIACP servers must implement. The
catalog service produces a xml document conforming to the catalog service DTD. The DTD
is as follows

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT Catalog (Service+)>

<!ELEMENT Service (

ServiceName,

ServiceDescription,

ReturnType?,

ReturnTypeDTD?,

DOC Intranet Architecture 119

Parameter*)>

<!ELEMENT Parameter (

ParamName,

ParamDescription)>

<!ELEMENT ServiceName (#PCDATA)>

<!ELEMENT ServiceDescription (#PCDATA)>

<!ELEMENT ReturnType (#PCDATA)>

<!ELEMENT ReturnDTD (#PCDATA)>

<!ELEMENT ParamName (#PCDATA)>

<!ELEMENT ParamDescription (#PCDATA)>

As specified in the DTD, the catalog service must return an XML document which includes
at least one service – the catalog service. Each service consists minimally of a Service Name
and a Service Description. The Service Name is the parameter used by clients to request the
service.

An example Catalog Service XML document follows.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Catalog SYSTEM
"http://dtd.doc.gov/iacp_catalog.dtd">

<Catalog>

<Service>

<ServiceName>Catalog</ServiceName>

<ServiceDescription>

Listing of all available services

from this DOCAIP server

</ServiceDescription>

<ReturnType>text/xml</ReturnType>

<ReturnDTD>

DOC Intranet Architecture 120

http://dtd.doc.gov/iacp_catalog.dtd

</ReturnDTD>

</Service>

<Service>

<ServiceName>GetDateAsString</ServiceName>

<ServiceDescription>

Returns a Date-Time stamp as a
string.

EST is assumed, set param
CGI=<timezone>

to override

</ServiceDescription>

<ReturnType>text/plaintext</ReturnType>

<Parameter>

<ParamName>Timezone</ParamName>

<ParamDescription>

The time zone in which you wish
the

returned string to be displayed.

</ParamDescription>

</Parameter>

</Catalog>

Here, the server identifies two services it provides. The first is of course the obligatory
catalog service itself. The second is a time of day service.

The time service has a service name of GetDateAsString. Clients wishing to access this
service must pass in a HTTP CGI parameter Service=GetDateAsString.

The service returns a plaintext representation of a time-date stamp.

DOC Intranet Architecture 121

The service has a single parameter, named Timezone. Clients wishing to see the time
formatted to, for example, Pacific Standard Time will provide a HTTP CGI parameter
Timezone=PST.

8 Issues

Should clients be able to authenticate the server in non- SSL mode by sending its own nonce
in the reqeust.

Should we expand the catalog service to delineate the allowable types and values for service
parameters.

9 References
[CRYPTO]. DOC Intranet Cryptographic Infrastructure

[DIRSVC] Directory Schema for the DOC Intranet Directory Service

[IACP-API] DOC Intranet IACP API and Tutorial

[RFC2119] Key words for use in RFCs to Indicate Requirement Levels (RFC 2119),
available http://www.faqs.org/rfcs/rfc2119.html

[RFC2616] Hypertext Transfer Protocol -- HTTP/1.1 (RFC 2616), available
http://www.faqs.org/rfcs/rfc2616.html

[RFC2617] HTTP Authentication: Basic and Digest Access Authentication, available
http://www.faqs.org/rfcs/rfc2617.html

[SSL] The SSL Protocol, Version 3.0, available
http://home.netscape.com/eng/ssl3/ssl-toc.html

DOC Intranet Architecture 122

Apendix G: DOC Inter-Application Communication Protocol
API

Version 1.0

Revised: 2000.11.12

1 Introduction
Applications within the DOC intranet can share information via the DOC Inter-Application
Communication Protocol (IACP). The purpose of the API is to provide an easy means for
programmers to supply and obtain information via IACP. This document describes APIs for
Java, Perl, and PHP.

2 Terminology

DOC

Department of Commerce.

IACP

Inter-Application Communication Protocol. The DOC protocol that this API facilitates.
See [IACP].

3 Overview

3.1 Using the IACP APIs

The IACP API provides applications an easy means of supplying and obtaining information via
IACP. The IACP library methods handle protocol details and perform networking so the
developer can concentrate on the application they are implementing rather than its environment
infrastructure.

An application supplying information via IACP uses the IACP Server API, and an application
that needs to obtain information via IACP uses the IACP Client API. If an application needs to
do both, it will use both.

The below diagram depicts use of the IACP API .

DOC App 1 IACP

Client
API

IACP Request(s)
DOC App 2 IACP

Server

APIIACP Response(s)

DOC Intranet Architecture 123

The application supplying the IACP service (DOC App 2) shows intermediate arrow to the IACP
Server API because it delegates requests to the IacpHandler rather than providing for it to handle
them directly.

4 The IACP Client API for Java

The IACP client API for Java is in package gov.doc.intranet. The primary class is IacpClient.
You can discover an application's services via the getCatalog method. It returns an array of
IacpService objects. From these you can obtain the names and details of the application's
services. If you want to request from one of these services, the IacpClient provides
getResponse() methods. The IacpClient handles whatever authentication is demanded by the
service transparently.

4.1 The IacpClient Class

An IacpClient object is used to request information from other applications via IACP. The
following depicts a typical use of an IacpClient.

 IacpClient myClient = new IacpClient(MY_IID, MY_PRIVATE_KEY);

 myClient.setServiceUrl(theServiceUrl);

 /**/

 /* For a binary contents you can use IacpResponse directly. */

 /**/

 IacpResponse myResponse;

 Properties paramProperties;

 // set appropriate service parameters in paramProperties.

 try {

 myResponse =

 myClient.getResponse("aBinaryService", paramProperties);

 } catch (IOException exc) {

 // handle it

 } catch (AuthenticationException exc) {

 // handle it

DOC Intranet Architecture 124

 }

 /* Now get the bytes for use. */

 byte[] myByteArray = myResponse.getBytes();

 /***/

 /* For other return types, use a subclass of IacpResponse. */

 /***/

 /* Get a StringIacpResponse. */

 // set appropriate service parameters in paramProperties.

 try {

 myResponse =

 myClient.getResponse("aStringService", paramProperties);

 } catch (IOException exc) {

 // handle it

 } catch (AuthenticationException exc) {

 // handle it

 }

 /* Create the StringIacpResponse and get the String. */

 StringIacpResponse myStringResponse;

 try {

 myStringResponse = new StringIacpResponse(myResponse);

 } catch(BadContentTypeException) {

 // handle it

 }

DOC Intranet Architecture 125

 String myReturnString = myStringResponse.getString();

 /* Get an XmlIacpResponse. */

 // set appropriate service parameters in paramProperties.

 try {

 myResponse =

 myClient.getResponse("anXmlService", paramProperties);

 } catch (IOException exc) {

 // handle it

 } catch (AuthenticationException exc) {

 // handle it

 }

 /* Create the XmlIacpResponse and get the XML document. */

 XmlIacpResponse myXmlResponse;

 try {

 myXmlResponse = new XmlIacpResponse(myResponse);

 } catch(BadContentTypeException) {

 // handle it

 }

 try {

 org.w3c.dom.Document myDocument = myXmlResponse.getDocument();

 } catch (...Exception) {

 // handle it

 }

DOC Intranet Architecture 126

Signature

public class IacpClient extends Object

Constructors

IacpClient

 public IacpClient()

IacpClient

 public IacpClient(String myIid,

 java.security.PrivateKey myPrivateKey)

Parameters:

myIid - My application IID.

myPrivateKey - The private key for my application. The IacpClient uses the private key
to use a service that requires authentication.

Methods

setIid

 public void setIid(String myIid)

Parameters:

myIid - My application IID.

setPrivateKey

 public void setPrivateKey(PrivateKey myPrivateKey)

Parameters:

myPrivateKey - The private key for my application. The IacpClient uses the private key
to use a service that requires authentication.

DOC Intranet Architecture 127

setServiceUrl

 public void setServiceUrl(URL serviceUrl)

Parameters:

serviceUrl - The URL of the IACP service from whom information will be requested.

getCatalog

 public IacpService[] getCatalog()

Returns:

An array of IacpService objects. Each IacpService object describes a service available
from an application providing IACP services.

getResponse

 public IacpResponse getResponse(String serviceName)

Use this method if you don't need to send parameters to an IACP service.

Parameters:

serviceName - The name of the IACP service to be requested.

Returns:

An IacpResponse object. Unless the IacpResponse content is binary, it will probably be
used to initialize one of its subclasses, such as XmlIacpResponse or StringIacpResponse.

getResponse

 public IacpResponse getResponse(String serviceName,

 Properties params)

Parameters:

serviceName - The name of the IACP service to be requested.

params - The parameters to be used as input to the IACP service.

DOC Intranet Architecture 128

Returns:

An IacpResponse object. Unless the IacpResponse content is binary, it will probably be
used to initialize one of its subclasses, such as XmlIacpResponse or StringIacpResponse.

4.2 The IacpResponse Class

The IacpResponse object is used to obtain the information in the reply from an IACP service
request. It is returned by the IacpClient.getResponse method. If the information in the reply is
binary in nature, the IacpResponse.getBytes() method can be used to obtain the information in
raw binary form.

Subclasses of IacpResponse exist to facilitate obtaining a response of another content-type. If
your application wishes to provide a response in some proprietary or encoded form, you can
create a subclass of IacpResponse to help the consumer of of your IACP service information.

The following demonstrates the use of IacpResult for obtaining binary data.

 IacpResponse myResponse;

 Properties paramProperties;

 // set appropriate service parameters in paramProperties.

 try {

 myResponse =

 myClient.getResponse("aBinaryService", paramProperties);

 } catch (IOException exc) {

 // handle it

 } catch (AuthenticationException exc) {

 // handle it

 }

 /* Now get the bytes for use. */

 byte[] myByteArray = myResponse.getBytes();

DOC Intranet Architecture 129

The following demonstrates use of the XmlIacpResult subclass of IacpResult.

 // set appropriate service parameters in paramProperties.

 try {

 myResponse =

 myClient.getResponse("anXmlService", paramProperties);

 } catch (IOException exc) {

 // handle it

 } catch (AuthenticationException exc) {

 // handle it

 }

 /* Create the XmlIacpResponse and get the XML document. */

 XmlIacpResponse myXmlResponse;

 try {

 myXmlResponse = new XmlIacpResponse(myResponse);

 } catch(BadContentTypeException) {

 // handle it

 }

 try {

 org.w3c.dom.Document myDocument = myXmlResponse.getDocument();

 } catch (...Exception) {

 // handle it

 }

DOC Intranet Architecture 130

Signature

public class IacpResponse extends Object

Variables

contentType

 protected String contentType

content

 protected byte content[]

Constructors

IacpResponse

 protected IacpResponse()

IacpResponse

 protected IacpResponse(String contentType,

 byte content[])

Parameters:

contentType - The value of the content-type header field of the IACP service response.

content - The content of the IACP service response.

Methods

getContentType

 public String getContentType()

Returns:

DOC Intranet Architecture 131

The value of the content-type header field of the IACP service response.

getContent

 public byte[] getContent()

Returns:

The content of the IACP service response.

4.4 The XmlIacpResponse Class

The XmlIacpResponse object extends IacpResponse and adds the getXmlContent() method.

Signature

public class XmlIacpResponse

extends IacpResponse

Constructors

XmlIacpResponse

 public XmlIacpResponse()

XmlIacpResponse

 public XmlIacpResponse(IacpResponse response) throws BadContentTypeException

Parameters:

response - The IacpResponse obtained from the IacpClient.getResponse() method.

Throws: BadContentTypeException

If the content-type of the response is specified and is not "text/xml".

DOC Intranet Architecture 132

Methods

setResponse

 public void setResponse(IacpResponse response)

Throws: BadContentTypeException

If the content-type of the response is specified and is not "text/xml". Note that the
contents are set before the Exception is thrown, so it is still possible to call the
getXmlContent() method, which you would expect to throw a parsing Exception. This is
included as a convenience in case the IACP service is improperly implemented.

getXmlContent

 public Document getXmlContent() throws IOException

Returns:

The XML response in the form of a Document object.

Throws: IOException

This is just a placeholder in the current XmlIacpResponse specification. The actual
exceptions thrown will be implementation dependent.

4.5 The StringIacpResponse Class

The StringIacpResponse object extends IacpResponse and adds the getStringContent() method.

Signature

public class StringIacpResponse extends IacpResponse

Constructors

StringIacpResponse

 public StringIacpResponse()

DOC Intranet Architecture 133

StringIacpResponse

 public StringIacpResponse(IacpResponse response) throws BadContentTypeException

Parameters:

response - The IacpResponse obtained from the IacpClient.getResponse() method.

Throws: BadContentTypeException

If the content-type of the response is specified and is not "text/plain".

Methods

setResponse

 public void setResponse(IacpResponse response)

Throws: BadContentTypeException

If the content-type of the response is specified and is not "text/plain". Note that the
contents are set before the Exception is thrown, so it is still possible to call the
getStringContent() method to obtain the results as a String. The normal way to do this
given that the content-type is not not specified as "text-plain", however, would be to
convert the byte[] obtained from IacpResult.getContent() to a String. This is included as a
convenience in case the IACP service is improperly implemented.

getStringContent

 public String getStringContent()

Returns:

The response in the form of a String.

4.6 The IacpService Class

The IacpService object describes an IACP service provided by an application. An array of
IacpService objects is returned by the IacpClient.getCatalog() method. Each object is the
application's description of a single IACP service it offers.

DOC Intranet Architecture 134

Signature

public class IacpService extends Object

Variables

name

 protected String name

description

 protected String description

returnType

 protected String returnType

returnDtd

 protected String returnDtd

parameters

 protected Properties parameters

Constructors

IacpService

 protected IacpService()

IacpService

 protected IacpService(String name,

DOC Intranet Architecture 135

 String description)

IacpService

 protected IacpService(String name,

 String description,

 String returnType,

 String returnDtd,

 Properties parameters)

Methods

getName

 public String getName()

Returns:

The name of the service.

getDescription

 public String getDescription()

Returns:

A description of the service.

DOC Intranet Architecture 136

getReturnType

 public String getReturnType()

Returns:

The returnType of the service. Note that returnType is optional to the catalog entry. If it
is not specified, this method returns null.

getReturnDtd

 public String getReturnDtd()

Returns:

The ReturnDTD of the service. Note that this is the string returned by the catalog: it has
not been checked for existence or validity. Note also that returnDTD is optional to the
catalog. If it is not specified, this method returns null.

getParameters

 public Properties getParameters()

Returns:

The parameters accepted by the service as input. Note that parameters are optional to the
service. If the service does not accept parameters, this method returns null.

4.7 The BadContentTypeException Class

Thrown by a subclass of IacpResponse when the content-type of the response is found to be
inappropriate for the subclass' use in processing it.

Signature

public class BadContentTypeException extends IOException

Constructors

BadContentTypeException

 public BadContentTypeException()

DOC Intranet Architecture 137

Constructs a BadContentTypeException with no specified detail message.

BadContentTypeException

 public BadContentTypeException(String msg)

Constructs a BadContentTypeException with the specified detail message.

5 The IACP Server API for Java

The IACP server API for Java is also in package gov.doc.intranet. The primary class is
IacpHandler. You initialize an IacpHandler via the examineRequest method. You can
then get the parameters and relevant headers of the request, set the authentication scheme and
check for authorization, and use the IacpHandler to return a variety of failure responses.

5.1 The IacpHandler Class

An IacpHandler object is used to process requests from other applications via IACP. The
following depicts a typical use of an IacpHandler.

 IacpHandler myHandler = new IacpHandler(docDirectory);

 myHandler.examineRequest(httpReq, httpRes);

 /* This app may want to restrict access or customize response based

 * on the identity of the requesting app.

 */

 String reqIid = myHandler.getRequesterIid();

 /* We can request paramaters individually by name or all at once. */

 Properties parameters = myHandler.getParameters();

 String reqService = myHandler.getReqestedService();

 if (reqService.equals("catalog")) {

 /* We have decided not to require authentication for the catalog

DOC Intranet Architecture 138

 * service.

 */

 myHandler.setAuthenticationScheme(AUTH_NONE);

 /* note that myCatalogGenerationMethod contains a

 * httpRes.setContentType() call that sets the response

 * content-type to "text/xml".

 */

 myCatalogGenerationMethod(...);

 return;

 }

 /* The rest of our services use AUTH_IACP_TIME_STAMP, so we can check

 * authentication here rather than individually per service.

 */

 myHandler.setAuthenticationScheme(AUTH_IACP_TIME_STAMP);

 if (!myHandler.isAuthorized()) {

 /* HTTP response code 401 */

 myHandler.demandAuthentication();

 return;

 }

 if (reqService.equals("StringService1")) {

 /* The catalog service has provided a ReturnType for this service of

 * "text/plain". The myStringService1ResponseMethod contains a

 * httpRes.setContentType() call that sets the response content-type

 * to "text/plain".

 */

 myStringService1ResponseMethod(...);

 return;

DOC Intranet Architecture 139

 } else if (reqService.equals("XmlService2")) {

 /* The catalog service has provided a ReturnType for this service of

 * "text/xml". The myXmlService2ResponseMethod contains a

 * httpRes.setContentType() call that sets the response content-type

 * to "text/xml".

 */

 myXmlServiceResponse2Method(...);

 return;

 } else {

 /* HTTP response code 404 */

 myHandler.returnNotFoundError();

 }

Signature

public class IacpHandler extends Object

Variables

AUTH_NONE

 public static final int AUTH_NONE

Authentication scheme: Instructs the IacpHandler to ignore authentication.

AUTH_BASIC

 public static final int AUTH_BASIC

Authentication scheme: Instructs the IacpHandler to use Basic authentication as described
in [RFC 2617].

AUTH_DIGEST

 public static final int AUTH_DIGEST

DOC Intranet Architecture 140

Authentication scheme: Instructs the IacpHandler to use Digest authentication as
described in [RFC 2617].

AUTH_IACP_SIMPLE

 public static final int AUTH_IACP_SIMPLE

Authentication scheme: Instructs the IacpHandler to use the IACP authentication as
described in the protocol description. Neither time stamp or single-use techniques are to
be employed.

AUTH_IACP_TIME_STAMP

 public static final int AUTH_IACP_TIME_STAMP

Authentication scheme: Instructs the IacpHandler to include a timestamp in the
authentication nonce and check that each returned nonce is no older than the age set by
setMaxNonceAge().

AUTH_IACP_SINGLE_USE

 public static final int AUTH_IACP_SINGLE_USE

Authentication scheme: Instructs the IacpHandler to keep track of nonces so that it can
confirm that each nonce is used only once. This is not likely to be implemented in the
IACP version 1.0 library, and may throw an IllegalArgumentException.

AUTH_IACP_SINGLE_USE_TIME_STAMP

 public static final int AUTH_IACP_SINGLE_USE_TIME_STAMP

Authentication scheme: Combines AUTH_IACP_SINGLE_USE and
AUTH_IACP_TIME_STAMP. This is not likely to be implemented in the IACP version
1.0 library, and may throw an IllegalArgumentException.

Constructors

IacpHandler

DOC Intranet Architecture 141

 public IacpHandler(DocDirectory docDirectory)

Parameters:

docDirectory - A DocDirectory object.

Methods

setMaxNonceAge

 public void setMaxNonceAge(int age)

Specifies the maximum age of a returned authentication nonce. Meaningful only if a
time-stamp authentication scheme is used.

Parameters:

age - The maximum acceptable age of the nonce in seconds. If the parameter is not set, it
defaults to 60.

setAuthenticationScheme

 public void setAuthenticationScheme(int scheme)

Specifies the authentication scheme to be enforced by the handler. Default is
AUTH_IACP_TIME_STAMP.

examineRequest

 public void examineRequest(HttpServletRequest req,

 HttpServletResponse res)

Causes the IacpHandler to process a request for IACP service, and supplies it the
response object through which it may return a response if it is called upon to do so.

This must be called before any request-processing calls are made. The following methods
will throw NotInitializedException if called before a call to examineRequest():

• isAuthorized

• getRequesterIid

• getRequestedService

DOC Intranet Architecture 142

• getParameter

• getParameters

• demandAuthentication

• returnNoAcessError

• returnNotFoundError

Parameters:

req - The incoming servlet request.

req - The outgoing servlet response.

isAuthorized

 public boolean isAuthorized()

Indicates that the request meets the requirements of the specified authentication scheme.
At the time that it is called, it checks that the provided Authorization passes the currently
specified authentication scheme. For IACP authorization schemes, this includes
performing asymmetric decryption.

If the current authentication scheme is AUTH_NONE, the method returns true.

If false is returned, the IacpHandler must provide a response to the requester containing
HTTP response code 401 (Unauthorized) and a WWW-Authenticate header specifying
the Authorization required of the request. To do so, call IacpHandler's
demandAuthentication method.

If a service requires a greater level of authorization than IACP authentication provides, it
can use the requester's IID to decide if or what it should provide in the response. Should
the request fail the application's requirements even though it provided IACP
authentication, call the IacpHandler's returnNoAccessError method.

Returns:

True if a valid Authorization header is present in the request. If the authentication scheme
is set to AUTH_NONE, always returns true.

DOC Intranet Architecture 143

getRequesterIid

 public String getRequesterIid()

Returns:

The IID of the requesting application.

getRequestedService

 public String getRequestedService()

Returns:

The name of the requested service. For instance, if the catalog service is requested,
"catalog".

getParameter

 public String getParameter(String paramName)

Parameters:

paramName - The parameter for which a value is sought.

Returns:

The value supplied for the paramName parameter. If the parameter was not included in
the request, returns null.

getParameters

 public Properties getParameters()

Returns:

A Properties containing the parameters supplied by the requester. If no parameters were
supplied by the requester, returns null.

DOC Intranet Architecture 144

demandAuthentication

 public void demandAuthentication()

Respond to the requester that they are required to authenticate to access the requested
service. Causes the IacpHandler to respond with HTTP response code 401
(Unauthorized) and the appropriate WWW-Authenticate header given the specified
authentication scheme.

returnNoAccessError

 public void returnNoAccessError()

Respond to requester that they have successfully authenticated, but are not allowed
access to the requested service. IacpHandler responds with HTTP response code 403
(Forbidden) .

returnNotFoundError

 public void returnNotFoundError()

Respond to requester that the requested service is not available. IacpHandler responds
with HTTP response code 404 (Not Found).

5.2 The NotInitializedException Class

Thrown by IacpHandler when the handler is asked to do work before it has been initialized via
the examineRequest method.

Signature

public class NotInitializedException extends Object

Constructors

NotInitializedException

 public NotInitializedException()

Constructs a NotInitializedException with no specified detail message.

DOC Intranet Architecture 145

NotInitializedException

 public NotInitializedException(String msg)

Constructs a NotInitializedException with the specified detail message.

6 The IACP Client API for Perl

The IACP client API for Perl resides in a module named DOCIntranet.pm. It uses CPAN
modules Exception and URI::URL. An implementation of this API will also use an XML
module. The most likely candidate is the XML::Parser module. The implementation will also
use a module to assist with encryption and key handling.

The primary class is IacpClient. You can discover an application's services via the
getCatalog method. It returns an array of IacpService objects. From these you can obtain
the names and details of the application's services. If you want to request from one of these
services, the IacpClient provides getResponse() methods. The IacpClient handles whatever
authentication is demanded by the service transparently.

6.1 The IacpClient Class

An IacpClient object is used to request information from other applications via IACP. The
following depicts a typical use of an IacpClient.

use Exception;

use URI::URL;

use DOCIntranet;

$myClient = new IacpClient($MY_IID, $MY_PRIVATE_KEY);

$myClient->setServiceUrl($theServiceUrl);

#***

For a binary contents you can use IacpResponse directly. *

#***

DOC Intranet Architecture 146

(set appropriate service parameters in %passedParams.)

try {

 $myResponse =

 $myClient->getResponse('aBinaryService', %passedParams);

}

catch DOCIntranet::IacpConnectionException connExc =>

sub {

 // handle it

 return;

}

catch DOCIntranet::IacpAuthenticationException authExc =>

sub {

 # handle it

 return;

}

Now get the bytes for use.

$myBytes = $myResponse->getBytes();

#**

For other return types, use a subclass of IacpResponse. *

#**

Get an XmlIacpResponse.

DOC Intranet Architecture 147

(set appropriate service parameters in %passedParams.)

try {

 $myResponse =

 $myClient->getResponse('anXmlService', %passedParams);

 $myXmlResponse = new XmlIacpResponse($myResponse);

 $myXmlDocument = $myXmlResponse->getDocument();

}

catch DOCIntranet::IacpConnectionException connExc =>

sub {

 # handle it

 return;

}

catch DOCIntranet::IacpAuthenticationException authExc =>

sub {

 # handle it

 return;

}

Signature

package IacpClient ;

@ISA = ('UNIVERSAL');

Constructor

$myIacpClient = new IacpClient([$myIid, $myPrivateKey]);

DOC Intranet Architecture 148

Parameters:

myIid - My application IID.

myPrivateKey - The private key for my application. The IacpClient uses the private key
to use a service that requires authentication.

Methods

setIid

$myIacpClient->setIid(myIid);

Parameters:

myIid - My application IID.

setPrivateKey

$myIacpClient->setPrivateKey(myPrivateKey);

Parameters:

myPrivateKey - The private key for my application. The IacpClient uses the private key
to use a service that requires authentication.

setServiceUrl

$myIacpClient->setServiceUrl($theServiceUrl);

Parameters:

serviceUrl - The URI::URL of the IACP service from whom information will be
requested.

getCatalog

@theServices = $myIacpClient->getCatalog();

Returns:

DOC Intranet Architecture 149

An array of IacpService objects. Each IacpService object describes a service available
from an application providing IACP services.

getResponse

$myIacpResponse = $myIacpClient->getResponse($serviceName[, %params]);

Parameters:

serviceName - The name of the IACP service to be requested.

params - The parameters to be used as input to the IACP service. The keys are the param
names.

Returns:

An IacpResponse object. Unless the IacpResponse content is binary, it will probably be
used to initialize one of its subclasses, such as XmlIacpResponse.

6.2 The IacpResponse Class

The IacpResponse object is used to obtain the information in the reply from an IACP service
request. It is returned by the IacpClient.getResponse method. If the information in the reply is
binary or a plain string, the IacpResponse->getContent() method can be used to obtain the
information in binary form or as a string.

Subclasses of IacpResponse exist to facilitate obtaining a response of another content-type. If
your application wishes to provide a response in some proprietary or encoded form, you can
create a subclass of IacpResponse to help the consumer of of your IACP service information.

The following demonstrates the use of IacpResult for obtaining binary data.

use Exception;

use URI::URL;

use DOCIntranet;

(set appropriate service parameters in %passedParams.)

try {

 $myResponse =

DOC Intranet Architecture 150

 myClient->getResponse('aBinaryService', %passedParams);

 $myBytes = $myResponse.getBytes();

}

catch DOCIntranet::IacpConnectionException connExc =>

sub {

 # handle it

 return;

}

catch DOCIntranet::IacpAuthenticationException authExc =>

sub {

 # handle it

 return;

}

The following demonstrates use of the XmlIacpResult subclass of IacpResult.

use Exception;

use URI::URL;

use DOCIntranet;

(set appropriate service parameters in paramProperties.)

try {

 $myResponse =

 $myClient->getResponse('anXmlService', %passedParams);

DOC Intranet Architecture 151

 $myXmlResponse = new XmlIacpResponse($myResponse);

 $myDocument = $myXmlResponse->getDocument();

}

catch DOCIntranet::XmlParseException authExc =>

sub {

 # handle it

 return;

}

Signature

package IacpResponse;

@ISA = ('UNIVERSAL');

Constructor

$myResponse = new Response([$contentType, $content]);

Parameters:

contentType - The value of the content-type header field of the IACP service response.

content - The content of the IACP service response.

Methods

getContentType

$theContentType = $myResponse->getContentType();

Returns the value of the content-type header field of the IACP service response.

getContent

$theContent = $myResponse->getContent();

Returns the contents of the IACP service response.

DOC Intranet Architecture 152

6.3 The XmlIacpResponse Class

The XmlIacpResponse object extends IacpResponse and adds the getXmlContent() method.

Signature

package XmlIacpResponse;

@ISA = ('IacpResponse');

Constructor

$myXmlResponse = new XmlIacpResponse($theIacpResponse);

Will throw a DOCIntranet::BadContentTypeException if the content-type of the response
is specified and is not "text/xml".

Parameters:

response - The IacpResponse obtained from the IacpClient->getResponse() method.

Methods

setResponse

$myXmlResponse->setResponse($myIacpResponse);

Throws DOCIntranet::BadContentTypeException if the content-type of the response is
specified and is not "text/xml". Note that the contents are set before the Exception is
thrown, so it is still possible to call the getXmlContent() method, which you would
expect to throw a parsing Exception. This is included as a convenience in case the IACP
service is improperly implemented.

getXmlContent

$myXmlDocument = $myXmlResponse->getXmlContent();

Returns the XML response. This will be an object to be determined by implementation.

Throws DOCIntranet::XMLParseException if it is unable to parse the delivered XML.

This is just a placeholder in the current XmlIacpResponse specification. The actual
exceptions thrown will be implementation dependent.

DOC Intranet Architecture 153

6.4 The IacpService Class

The IacpService object describes an IACP service provided by an application. An array of
IacpService objects is returned by the IacpClient->getCatalog() method. Each object is the
application's description of a single IACP service it offers.

Signature

package IacpService;

@ISA = ('UNIVERSAL');

Constructor

IacpService

$myIacpService = new IacpService(

[$name,

 description[,

 returnType,

 returnDtd,

 parameters]]);

Methods

getName

$name = $myIacpService->getName();

Returns the name of the service.

getDescription

$description = $myIacpService->getDescription();

Returns a description of the service.

DOC Intranet Architecture 154

getReturnType

$returnType = $myIacpService->getReturnType();

Returns the content-type of the service. Note that content-type is optional to the catalog
entry. If it is not specified, this method returns null.

getReturnDtd

$returnDtd = $myIacpService->getReturnDtd();

Returns:

The ReturnDTD of the service. Note that this is the string returned by the catalog: it has
not been checked for existence or validity. Note also that returnDTD is optional to the
catalog. If it is not specified, this method returns null.

getParameters

%passedParams = $myIacpService->getParameters();

Returns:

The parameters accepted by the service as input. Note that parameters are optional to the
service. If the service does not accept parameters, this method returns null.

6.5 The BadContentTypeException Class

Signature

package BadContentTypeException;

@ISA = ('Exception');

Constructor

$exc = new BadContentTypeException();

Constructs a BadContentTypeException.

DOC Intranet Architecture 155

6.6 The XmlParseException Class

Signature

package XmlParseException;

@ISA = ('Exception');

Constructor

$exc = new XmlParseException();

Constructs a XmlParseException.

6.7 The IacpConnectionException Class

Signature

package IacpConnectionException;

@ISA = ('Exception');

Constructor

$exc = new IacpConnectionException();

Constructs a IacpConnectionException.

6.8 The IacpAuthenticationException Class

Signature

package IacpConnectionException;

@ISA = ('Exception');

Constructor

$exc = new IacpConnectionException();

Constructs an IacpConnectionException.

DOC Intranet Architecture 156

7 The IACP Server API for Perl
The IACP server API for Perl is also in DOCIntranet.pm. It uses the CPAN module Exception.

The primary class is IacpHandler. You can use it to get the parameters and relevant headers of
the request, set the authentication scheme and check for authorization, and to return a variety of
failure responses.

7.1 The IacpHandler Class

An IacpHandler object is used to process requests from other applications via IACP. The
following depicts a typical use of an IacpHandler.

 $myHandler = new IacpHandler();

 try {

 $myHandler->examineRequest();

 }

 catch DOCIntranet::SomeException exc =>

sub {

 # handle it

 return;

}

 # This app may want to restrict access or customize response based

 # on the identity of the requesting app.

 $reqIid = $myHandler->getRequesterIid();

 # We can request paramaters individually by name or all at once.

DOC Intranet Architecture 157

 %params = $myHandler->getParameters();

 $reqService = $myHandler->getReqestedService();

 if ($reqService cmp 'catalog') {

 # We have decided not to require authentication for the catalog

 # service.

 $reqService->setAuthenticationScheme($AUTH_NONE);

 # Note that myCatalogGenerationMethod sets the response content-type

 # to "text/xml".

 &myCatalogGenerationMethod(...);

 return;

 }

 # The rest of our services use $AUTH_IACP_TIME_STAMP, so we can check

 # authentication here rather than individually per service.

 $myHandler->setAuthenticationScheme($AUTH_IACP_TIME_STAMP);

 if (!$myHandler->isAuthorized()) {

 # HTTP response code 401

 $myHandler->demandAuthentication();

 return;

DOC Intranet Architecture 158

 }

 if ($reqService cmp 'StringService1') {

 # The catalog service has provided a ReturnType for this service of

 # "text/plain". The myStringService1ResponseMethod should set the

 # response content-type to "text/plain".

 &myStringService1ResponseMethod(...);

 return;

 } elsif ($reqService cmp 'XmlService2') {

 # The catalog service has provided a ReturnType for this service of

 # "text/xml". The myXmlService2ResponseMethod should set the

 # response content-type to "text/xml".

 &myXmlServiceResponse2Method(...);

 return;

 } else {

 # HTTP response code 404

 $myHandler->returnNotFoundError();

 }

Signature

package IacpHandler;

@ISA = ('UNIVERSAL');

DOC Intranet Architecture 159

Variables

$AUTH_NONE

Authentication scheme: Instructs the IacpHandler to ignore authentication.

$AUTH_BASIC

 public static final int AUTH_BASIC

Authentication scheme: Instructs the IacpHandler to use Basic authentication as described in
[RFC 2617].

$AUTH_DIGEST

Authentication scheme: Instructs the IacpHandler to use Digest authentication as described in
[RFC 2617].

$AUTH_IACP_SIMPLE

Authentication scheme: Instructs the IacpHandler to use the IACP authentication as described in
the protocol description. Neither time stamp or single-use techniques are to be employed.

$AUTH_IACP_TIME_STAMP

Authentication scheme: Instructs the IacpHandler to include a timestamp in the authentication
nonce and check that each returned nonce is no older than the age set by setMaxNonceAge().

$AUTH_IACP_SINGLE_USE

Authentication scheme: Instructs the IacpHandler to keep track of nonces so that it can confirm
that each nonce is used only once. This is not likely to be implemented in the IACP version 1.0
library, and may throw an IllegalArgumentException.

$AUTH_IACP_SINGLE_USE_TIME_STAMP

DOC Intranet Architecture 160

Authentication scheme: Combines AUTH_IACP_SINGLE_USE and
AUTH_IACP_TIME_STAMP. This is not likely to be implemented in the IACP version 1.0
library, and may throw an IllegalArgumentException.

Constructor

$myIacpHandler = new IacpHandler($docDirectory);

Parameters:

docDirectory - A DocDirectory object.

Methods

examineRequest

$myIacpHandler->examineRequest();

Causes the IacpHandler to determine that sufficient information about the request is
available to respond to subsequent method calls.

Throws exceptions to be determined at implementation.

setMaxNonceAge

$myIacpHandler->setMaxNonceAge($age);

Specifies the maximum age of a returned authentication nonce. Meaningful only if a
time-stamp authentication scheme is used.

Parameters:

age - The maximum acceptable age of the nonce in seconds. If the parameter is not set, it
defaults to 60.

setAuthenticationScheme

$myIacpHandler->setAuthenticationScheme($scheme);

DOC Intranet Architecture 161

Specifies the authentication scheme to be enforced by the handler. Default is
$AUTH_IACP_TIME_STAMP.

isAuthorized

$auth = $myIacpHandler->isAuthorized();

Indicates that the request meets the requirements of the specified authentication scheme.
At the time that it is called, it checks that the provided Authorization passes the currently
specified authentication scheme. For IACP authorization schemes, this includes
performing asymmetric decryption.

If the current authentication scheme is $AUTH_NONE, the method returns true.

If false is returned, the IacpHandler must provide a response to the requester containing
HTTP response code 401 (Unauthorized) and a WWW-Authenticate header specifying
the Authorization required of the request. To do so, call IacpHandler's
demandAuthentication method.

If a service requires a greater level of authorization than IACP authentication provides, it
can use the requester's IID to decide if or what it should provide in the response. Should
the request fail the application's requirements even though it provided IACP
authentication, call the IacpHandler's returnNoAccessError method.

getRequesterIid

$reqIid = $myIacpHandler->getRequesterIid();

Returns the IID of the requesting application.

getRequestedService

$serviceName = $myIacpHandler->getRequestedService();

Returns the name of the requested service. For instance, if the catalog service is
requested, 'catalog'.

getParameter

$paramValue = $myIacpHandler->getParameter($paramName);

DOC Intranet Architecture 162

Returns the value supplied for the paramName parameter. If the parameter was not
included in the request, returns null.

Parameters:

paramName - The parameter for which a value is sought.

getParameters

%params = $myIacpHandler->getParameters();

Returns:

A hash containing the parameters supplied by the requester. If no parameters were
supplied by the requester, returns null.

demandAuthentication

$myHandler->demandAuthentication();

Respond to the requester that they are required to authenticate to access the requested
service. Causes the IacpHandler to respond with HTTP response code 401
(Unauthorized) and the appropriate WWW-Authenticate header given the specified
authentication scheme.

returnNoAccessError

$myHandler->returnNoAccessError();

Respond to requester that they have successfully authenticated, but are not allowed
access to the requested service. IacpHandler responds with HTTP response code 403
(Forbidden) .

returnNotFoundError

$myHandler->returnNotFoundError();

Respond to requester that the requested service is not available. IacpHandler responds
with HTTP response code 404 (Not Found).

DOC Intranet Architecture 163

7.2 The IllegalArgumentException Class

Signature

package IllegalArgumentException;

@ISA = ('Exception');

Constructor

$exc = new IllegalArgumentException();

Constructs an IllegalArgumentException.

7.3 The NotInitializedException Class

Signature

package NotInitializedException;

@ISA = ('Exception');

Constructor

$exc = new NotInitializedException();

Constructs an NotInitializedException.

DOC Intranet Architecture 164

8 The IACP Client API for PHP
The IACP client API for PHP is in library file DOCIntranet.inc. The primary class is
IacpClient. You can discover an application's services via its getCatalog method. It returns
an array of IacpService objects. From these you can obtain the names and details of the
application's services. If you want to request from one of these services, the IacpClient provides
getResponse() methods. The IacpClient handles whatever authentication is demanded by the
service transparently.

8.1 The IacpClient Class

An IacpClient object is used to request information from other applications via IACP. The
following depicts a typical use of an IacpClient.

include "DOCIntranet.inc";

$myClient = new IacpClient($MY_IID, $MY_PRIVATE_KEY);

$myClient->setServiceUrl($theServiceUrl);

/**/

/* For a binary contents you can use IacpResponse directly. */

/**/

// (set appropriate service parameters in $paramArray.)

$myResponse =

 $myClient->getResponse("aBinaryService", $paramArray);

isSet($myResponse) OR switch($doc_errno)

{

 /* We would test for case 0 if the function could intentionally

 ** return a null. This function will never intentionally

DOC Intranet Architecture 165

 ** return a null, so we skip it.

 */

 case CONNECTION_ERROR:

 // handle it, possibly return from this function

 break;

 case AUTHENTICATION_ERROR:

 // handle it, possibly return from this function

 break;

}

/* Now get the bytes for use. */

$myBytes = $myResponse->getBytes();

/***/

/* For other return types, use a subclass of IacpResponse. */

/***/

/* Get an XmlIacpResponse. */

// (set appropriate service parameters in $paramArray.)

$myResponse =

 $myClient->getResponse("anXmlService", $paramArray);

isSet($myResponse) OR switch($doc_errno)

{

 /* We would test for case 0 if the function could intentionally

DOC Intranet Architecture 166

 ** return a null. This function will never intentionally

 ** return a null, so we skip it.

 */

 case CONNECTION_ERROR:

 // handle it, possibly return from this function

 break;

 case AUTHENTICATION_ERROR:

 // handle it, possibly return from this function

 break;

}

$myXmlResponse = new XmlIacpResponse($myResponse);

isSet($myXmlResponse) OR switch($doc_errno)

{

 /* We would test for case 0 if the function could intentionally

 ** return a null. This function will never intentionally

 ** return a null, so we skip it.

 */

 case XML_ERROR:

 // handle it, possibly return from this function

 break;

}

$myXmlObject = $myXmlResponse->getXmlObject();

DOC Intranet Architecture 167

Signature

class IacpClient ;

Constructor

$myIacpClient = new IacpClient(string myIid, string myPrivateKey);

Parameters:

myIid - My application IID.

myPrivateKey - The private key for my application. The IacpClient uses the private key
to use a service that requires authentication. Here it is declared a string, but in
implementation it may be an object.

Methods

setServiceUrl

void $myIacpClient->setServiceUrl(string theServiceUrl);

Parameters:

serviceUrl - The URL of the IACP service from whom information will be requested.
Here it is declared a string, but in implementation it may be an object.

getCatalog

IacpService $servicesArray = $myIacpClient->getCatalog();

Returns:

An array of IacpService objects. Each IacpService object describes a service available
from an application providing IACP services.

getResponse

IacpResponse $myIacpResponse =

 $myIacpClient->getResponse(string serviceName, array params);

Parameters:

DOC Intranet Architecture 168

serviceName - The name of the IACP service to be requested.

params - The parameters to be used as input to the IACP service. The keys are the param
names.

Returns:

An IacpResponse object. Unless the IacpResponse content is binary, it will probably be
used to initialize one of its subclasses, such as XmlIacpResponse.

8.2 The IacpResponse Class

The IacpResponse object is used to obtain the information in the reply from an IACP service
request. It is returned by the IacpClient.getResponse method. If the information in the reply is
binary or a plain string, the IacpResponse->getContent() method can be used to obtain the
information in binary form or as a string.

Subclasses of IacpResponse exist to facilitate obtaining a response of another content-type. If
your application wishes to provide a response in some proprietary or encoded form, you can
create a subclass of IacpResponse to help the consumer of of your IACP service information.

The following demonstrates the use of IacpResult for obtaining binary data.

include "DOCIntranet.inc";

// (set appropriate service parameters in $paramArray.)

$myResponse =

 $myClient->getResponse("aBinaryService", $paramArray);

isSet($myResponse) OR switch($doc_errno)

{

 /* We would test for case 0 if the function could intentionally

 ** return a null. This function will never intentionally

 ** return a null, so we skip it.

 */

 case CONNECTION_ERROR:

DOC Intranet Architecture 169

 // handle it, possibly return from this function

 break;

 case AUTHENTICATION_ERROR:

 // handle it, possibly return from this function

 break;

}

/* Now get the bytes for use. */

$myBytes = $myResponse->getBytes();

The following demonstrates use of the XmlIacpResult subclass of IacpResult.

include "DOCIntranet.inc";

// (set appropriate service parameters in $paramArray.)

$myResponse =

 $myClient->getResponse("anXmlService", $paramArray);

isSet($myResponse) OR switch($doc_errno)

{

 /* We would test for case 0 if the function could intentionally

 ** return a null. This function will never intentionally

 ** return a null, so we skip it.

 */

 case CONNECTION_ERROR:

DOC Intranet Architecture 170

 // handle it, possibly return from this function

 break;

 case AUTHENTICATION_ERROR:

 // handle it, possibly return from this function

 break;

}

Signature

class IacpResponse;

Constructor

$myResponse = new Response(string contentType, string content);

Parameters:

contentType - The value of the content-type header field of the IACP service response.

content - The content of the IACP service response.

Methods

getContentType

string $theContentType = $myResponse->getContentType();

Returns the value of the content-type header field of the IACP service response.

getContent

string $theContent = $myResponse->getContent();

Returns the contents of the IACP service response.

DOC Intranet Architecture 171

8.3 The XmlIacpResponse Class

The XmlIacpResponse object extends IacpResponse and adds the getXmlContent() method.

Signature

class XmlIacpResponse extends IacpResponse;

Constructor

$myXmlResponse = new XmlIacpResponse(IacpResponse theIacpResponse);

Will set $doc_errno to BAD_CONTENT_TYPE if the content-type of the response is
specified and is not "text/xml".

Parameters:

response - The IacpResponse obtained from the IacpClient->getResponse() method.

Methods

getXmlContent

object $myXmlDocument = $myXmlResponse->getXmlContent();

Returns the XML response. This will be an object to be determined by implementation.

Will set $doc_errno to one of possibly several error codes to be determined at
implementation if there is a problem processing the returned XML.

8.4 The IacpService Class

The IacpService object describes an IACP service provided by an application. An array of
IacpService objects is returned by the IacpClient->getCatalog() method. Each object is the
application's description of a single IACP service it offers.

Signature

package IacpService;

Constructor

IacpService

DOC Intranet Architecture 172

$myIacpService = new IacpService(

string name,

 string description,

 string returnType,

 string returnDtd,

 array parameters);

Methods

getName

string $name = $myIacpService->getName();

Returns the name of the service.

getDescription

string $description = $myIacpService->getDescription();

Returns a description of the service.

getReturnType

string $returnType = $myIacpService->getReturnType();

Returns the content-type of the service. Note that content-type is optional to the catalog
entry. If it is not specified, this method returns null.

getReturnDtd

string $returnDtd = $myIacpService->getReturnDtd();

Returns:

The ReturnDTD of the service. Note that this is the string returned by the catalog: it has
not been checked for existence or validity. Note also that returnDTD is optional to the
catalog. If it is not specified, this method returns null.

DOC Intranet Architecture 173

getParameters

array $paramArray = $myIacpService->getParameters();

Returns:

The parameters accepted by the service as input. Note that parameters are optional to the
service. If the service does not accept parameters, this method returns null.

DOC Intranet Architecture 174

9 The IACP Server API for PHP
The IACP server API for PHP is also in DOCIntranet.inc.

The primary class is IacpHandler. You can use it to get the parameters and relevant headers of
the request, set the authentication scheme and check for authorization, and to return a variety of
failure responses.

9.1 The IacpHandler Class

An IacpHandler object is used to process requests from other applications via IACP. The
following depicts a typical use of an IacpHandler.

$myHandler = new IacpHandler();

$myHandler->examineRequest();

switch($doc_errno)

{

 case SOME_ERROR:

 // handle it, possibly return from this function

 break;

}

/*

** This app may want to restrict access or customize response based

** on the identity of the requesting app.

*/

$reqIid = $myHandler->getRequesterIid();

/* We can request paramaters individually by name or all at once. */

$params = $myHandler->getParameters();

DOC Intranet Architecture 175

$reqService = $myHandler->getReqestedService();

if ($reqService == "catalog")

{

 /*

 ** We have decided not to require authentication for the catalog

 ** service.

 */

 $reqService->setAuthenticationScheme(AUTH_NONE);

 /*

 ** Note that myCatalogGenerationMethod sets the response content-type

 ** to "text/xml".

 */

 myCatalogGenerationMethod(...);

 return;

}

/*

** The rest of our services use AUTH_IACP_TIME_STAMP, so we can check

** authentication here rather than individually per service.

*/

$myHandler->setAuthenticationScheme(AUTH_IACP_TIME_STAMP);

if (!$myHandler->isAuthorized())

{

 // HTTP response code 401

 $myHandler->demandAuthentication(); // does not return

 return;

DOC Intranet Architecture 176

}

if ($reqService == "StringService1")

{

 /*

 ** The catalog service has provided a ReturnType for this service of

 ** "text/plain". The myStringService1ResponseMethod should set the

 ** response content-type to "text/plain".

 */

 myStringService1ResponseMethod(...);

 return;

}

elseif ($reqService == "XmlService2")

{

 /*

 ** The catalog service has provided a ReturnType for this service of

 ** "text/xml". The myXmlService2ResponseMethod should set the

 ** response content-type to "text/xml".

 */

 myXmlServiceResponse2Method(...);

 return;

}

else

{

 # HTTP response code 404

 $myHandler->returnNotFoundError(); // does not return

DOC Intranet Architecture 177

}

Signature

class IacpHandler;

Constants

AUTH_NONE

Authentication scheme: Instructs the IacpHandler to ignore authentication.

AUTH_BASIC

 public static final int AUTH_BASIC

Authentication scheme: Instructs the IacpHandler to use Basic authentication as described in
[RFC 2617].

AUTH_DIGEST

Authentication scheme: Instructs the IacpHandler to use Digest authentication as described in
[RFC 2617].

AUTH_IACP_SIMPLE

Authentication scheme: Instructs the IacpHandler to use the IACP authentication as described in
the protocol description. Neither time stamp or single-use techniques are to be employed.

AUTH_IACP_TIME_STAMP

Authentication scheme: Instructs the IacpHandler to include a timestamp in the authentication
nonce and check that each returned nonce is no older than the age set by setMaxNonceAge().

AUTH_IACP_SINGLE_USE

Authentication scheme: Instructs the IacpHandler to keep track of nonces so that it can confirm
that each nonce is used only once. This is not likely to be implemented in the IACP version 1.0
library, and may throw an IllegalArgumentException.

DOC Intranet Architecture 178

AUTH_IACP_SINGLE_USE_TIME_STAMP

Authentication scheme: Combines AUTH_IACP_SINGLE_USE and
AUTH_IACP_TIME_STAMP. This is not likely to be implemented in the IACP version 1.0
library, and may throw an IllegalArgumentException.

Constructor

$myIacpHandler = new IacpHandler($docDirectory);

Parameters:

docDirectory - A DocDirectory object.

Methods

examineRequest

void $myIacpHandler->examineRequest();

Causes the IacpHandler to determine that sufficient information about the request is
available to respond to subsequent method calls.

Sets $doc_errno on errors to be determined at implementation.

setMaxNonceAge

void $myIacpHandler->setMaxNonceAge(int age);

Specifies the maximum age of a returned authentication nonce. Meaningful only if use a
time-stamp authentication scheme.

Parameters:

age - The maximum acceptable age of the nonce in seconds. If the parameter is not set, it
defaults to 60.

DOC Intranet Architecture 179

setAuthenticationScheme

void $myIacpHandler->setAuthenticationScheme(int scheme);

Specifies the authentication scheme to be enforced by the handler. Default is
AUTH_IACP_TIME_STAMP.

isAuthorized

bool $auth = $myIacpHandler->isAuthorized();

Indicates that the request meets the requirements of the specified authentication scheme.
At the time that it is called, it checks that the provided Authorization passes the currently
specified authentication scheme. For IACP authorization schemes, this includes
performing asymmetric decryption.

If the current authentication scheme is AUTH_NONE, the method returns true.

If false is returned, the IacpHandler must provide a response to the requester containing
HTTP response code 401 (Unauthorized) and a WWW-Authenticate header specifying
the Authorization required of the request. To do so, call IacpHandler's
demandAuthentication method.

If a service requires a greater level of authorization than IACP authentication provides, it
can use the requester's IID to decide if or what it should provide in the response. Should
the request fail the application's requirements even though it provided IACP
authentication, call the IacpHandler's returnNoAccessError method.

getRequesterIid

string $reqIid = $myIacpHandler->getRequesterIid();

Returns the IID of the requesting application.

getRequestedService

string $serviceName = $myIacpHandler->getRequestedService();

Returns the name of the requested service. For instance, if the catalog service is
requested, "catalog".

DOC Intranet Architecture 180

getParameter

string $paramValue = $myIacpHandler->getParameter(string paramName);

Returns the value supplied for the paramName parameter. If the parameter was not
included in the request, returns null.

Parameters:

paramName - The parameter for which a value is sought.

getParameters

array $params = $myIacpHandler->getParameters();

Returns:

An array containing the parameters supplied by the requester. If no parameters were
supplied by the requester, returns null. The keys of the array are the parameter names.

demandAuthentication

void $myHandler->demandAuthentication();

Respond to the requester that they are required to authenticate to access the requested
service. Causes the IacpHandler to respond with HTTP response code 401
(Unauthorized) and the appropriate WWW-Authenticate header given the specified
authentication scheme.

Note that this function exits upon returning the response.

returnNoAccessError

void $myHandler->returnNoAccessError();

Respond to requester that they have successfully authenticated, but are not allowed
access to the requested service. IacpHandler responds with HTTP response code 403
(Forbidden) .

DOC Intranet Architecture 181

Note that this function exits upon returning the response.

returnNotFoundError

void $myHandler->returnNotFoundError();

Respond to requester that the requested service is not available. IacpHandler responds
with HTTP response code 404 (Not Found).

Note that this function exits upon returning the response.

10 References
[RFC 2617] - HTTP Authentication: Basic and Digest Access Authentication

http://www.faqs.org/rfcs/rfc2617.html

